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Abstract

Purpose—We investigated nonlinear and offspring-sex specific associations of maternal 

birthweight (BW) with offspring BW among participants of the Omega study, a pregnancy cohort.

Methods—Maternal BW was modeled as a continuous variable, linear spline, and binary variable 

indicating low birthweight (LBW) (<2500 vs. ≥2500grams). Offspring BW was modeled as a 

continuous and binary variable in regression models. Non-linearity was assessed using likelihood 

ratio tests (LRT) in marginal linear spline models.

Results—For every 100gram increase of maternal BW, offspring BW increased by 22.29 

(95%CI: 17.57, 27.02) or 23.41 (95%CI: 6.87, 39.96) grams among mothers with normal BW or 

born macrosomic, respectively, but not among LBW mothers (β=−8.61 grams; 95%CI: −22.88, 

5.65) (LRT p-value=0.0005). For every 100gram increase in maternal BW, BW of male offspring 

increased 23.47 (95%CI: 16.75, 30.19) or 25.21 (95%CI: 4.35, 46.07) grams among mothers with 

normal BW or born macrosomic, respectively, while it decreased 31.39 grams (95%CI: −51.63, 

−11.15) among LBW mothers (LRT p-value<0.0001). Corresponding increases in BW of female 

offspring (16–22 grams) did not differ among mothers with LBW, normal BW or macrosomia 

(LRT p-value=0.9163).

Conclusions—Maternal and offspring BW associations are evident among normal BW and 

macrosomic mothers. These associations differ by offspring sex.

Correspondence: Collette N. Ncube, University of Washington, Box 357236, 1959 NE Pacific Street, Seattle, WA 98195-7236 USA, 
ncubec@u.washington.edu, Telephone: +1 (206) 543-7559. 
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INTRODUCTION

Birthweight (BW) is an indicator of fetal growth and development [1] which are important 

determinants of life course health. Low birthweight (LBW), less than 2500 grams, is 

associated with an increase in risk for morbidity and mortality in infancy [2, 3], and chronic 

diseases in adulthood [4–6]. LBW has a multifactorial origin [7]. Several proximal risk 

factors including those during or immediately prior to the pregnancy (e.g., maternal age and 

pre-pregnancy body mass index (ppBMI)) have been identified [7, 8]. From a life course 

perspective, distal risk factors such as mothers’ BW, childhood health, and early life 

socioeconomic position affect later life pregnancy outcomes [9]. These distal risk factors 

may be influential in the perpetuation of poor birth outcomes among certain groups.

Ounsted and Ounsted (1968) theorized that women who had constrained, in utero growth 

were more likely to have offspring with intrauterine growth retardation [10]. Since this 

seminal paper, several studies that examined maternal and offspring birth outcomes have 

been published [11–13]. Maternal BW has been consistently shown to be one of the 

strongest predictors of offspring BW [14]. Each 100 gram increase in maternal BW was 

associated with, on average, an additional 11–28 gram increase in offspring BW [15–18]; 

mothers who were LBW at their own birth had a two-fold increase in risk of having a LBW 

infant [19]. However, there is limited consensus concerning the potential non-linear 

relationships of maternal and offspring BW [20, 21] and whether the relationships differ for 

male and female offspring [22]. Despite the association of BW with adult BMI [23, 24] and 

the importance of ppBMI on the course and outcomes of the pregnancy [25], the role of 

maternal ppBMI as moderator of maternal-offspring BW associations has also not been 

examined. To address these limitations, we used a well-characterized pregnancy cohort to 

investigate overall and sex-specific associations between maternal and offspring BW.

MATERIALS AND METHODS

Study setting and study population

The study was conducted among participants of the Omega study, a prospective cohort study 

(1996–2008) of pregnant women designed to examine risk factors for pregnancy 

complications and adverse outcomes [26]. Women were recruited from prenatal care clinics 

affiliated with Swedish Medical Center in Washington State, and were eligible to enroll if 

they were at least 18 years of age, able to speak and read English, initiated prenatal care 

before 16 weeks of gestation, and planned to carry the pregnancy to term and deliver at one 

of the two study hospitals. A total of 4602 women were enrolled in the study and 4343 had 

singleton live-births. We had complete BW data (for the mother and the singleton live-born 

offspring) for N=3804 Omega study participants. In the current analyses, we included 

infants with BW at least 300 grams (N=3800). Participants were then excluded from 

analyses if they were missing data on gestational age at delivery (n=2), offspring sex (n=3), 

Ncube et al. Page 2

Ann Epidemiol. Author manuscript; available in PMC 2018 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smoking history (n=4), gestational diabetes (n=48), preeclampsia (n=1), or weight gain 

during pregnancy (n=8). These were not mutually exclusive. The final sample for analyses 

included 3736 mother-offspring dyads. The protocol used in the Omega study was approved 

by the Institutional Review Boards of Swedish Medical Center and Tacoma General Hospital 

and all women provided written informed consent.

Data collection

In-person interviews by trained study personnel were conducted using structured 

questionnaires shortly after enrollment, on average 15.6 weeks gestation (SD=2.9 weeks). 

The interviews were used to collect data on socio-demographic characteristics, medical and 

family history of participants, including self-reported mothers’ BW at their own birth in 

pounds and ounces, race, education, height, pre-pregnancy weight (immediately prior to the 

study pregnancy), age, prenatal cigarette smoking, and alcohol consumption. Pregnant 

women were followed until delivery. Information on infant BW in grams, gestational age at 

birth, offspring sex (male/female), and maternal weight within four weeks of delivery were 

abstracted from the hospital record after delivery, as was information on maternal health 

during the pregnancy and pregnancy complications.

Exposure and outcome

The primary exposure of interest was maternal BW, which was converted from pounds and 

ounces to grams. Maternal BW was modeled as 1) a continuous variable with each 1-unit 

change corresponding to a 100 gram change, 2) a linear spline with knots at 2500 grams 

(LBW) and 4000 grams (macrosomia), and 3) a binary variable indicating LBW status 

(<2500 vs. ≥2500 grams). The outcomes were offspring BW (as a continuous variable) and 

offspring LBW status.

Effect modifiers and covariates

Offspring sex was examined as a potential effect modifier. In secondary analyses, ppBMI 

was also considered as a potential effect modifier. Using World Health Organization criteria, 

ppBMI was calculated using weight (kg)/[height (m)]2 and the following categories: 

underweight (<18.5 kg/m2), normal weight (18.5–24.99 kg/m2) and overweight/obese (≥25 

kg/m2). Race (white, black, Asian, or other), preterm birth (<37 and ≥37 weeks gestation), 

family history of diabetes (yes/no), smoking history (never, current, or former smoker), 

educational attainment (≤high school/>high school), maternal age (<25, 25–35, or >35 

years), marital status (married/unmarried), parity (nulliparous/multiparous), gestational 

diabetes (yes/no), preeclampsia (yes/no), weight gain during pregnancy (inadequate, 

adequate or excessive based on Institute of Medicine recommendations per ppBMI category) 

[27], and chronic hypertension (yes/no) were included as covariates in statistical analyses.

Statistical analyses

We used summary statistics, means (standard deviation) and counts (percentage) for 

continuous and categorical variables, respectively, to describe the study population. We 

examined overall maternal-offspring BW associations, fitting linear regression models to 

estimate beta coefficients (β) and 95% confidence intervals (CIs). Maternal BW was 
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modeled as a continuous variable, linear spline [28], and binary variable (based on LBW 

status). In the first scenario, the slope estimated the average difference in mean offspring 

BW associated with a 100 gram increase in maternal BW. In the second scenario, the slope 

estimated differences in mean offspring BW per 100 gram increase in maternal BW among 

LBW (<2500 grams), normal BW (2500–3999 grams), and macrosomic (≥4000 grams) 

mothers. The statistical significance of the change in slope was determined using p-values of 

the coefficients obtained from a marginal linear spline model. We used the likelihood ratio 

test (LRT) to test the hypothesis that the maternal-offspring BW relationship was linear, 

against the alternative that it was not linear throughout the entire distribution of maternal 

BW. In the third scenario, we estimated the difference in mean BW of offspring delivered by 

LBW mothers compared to non-LBW mothers. We fit three Models in these analyses: 

Model 1 (unadjusted), Model 2 (adjusted for a priori determined potential confounders and 

precision variables selected based upon our intergenerational conceptual model: maternal 

race, family history of diabetes, smoking history and educational attainment, maternal age, 

marital status, parity, and offspring sex), and Model 3 (adjusted for Model 2 variables and 

potential mediators of associations: ppBMI, preterm birth, chronic hypertension, and 

pregnancy complications: gestational diabetes and preeclampsia). We also fit logistic 

regression models to estimate the odds ratios (ORs) and corresponding 95% CIs of offspring 

LBW associated with maternal BW modeled as a continuous variable, linear spline, and 

binary variable, as described above. We examined effect modification by offspring sex by 

repeating the analyses stratified by offspring sex. To test the statistical significance of the 

interactions, we fit models with indicators for maternal BW, offspring sex, and an interaction 

term between maternal BW and offspring sex. The p-value of the interaction term was used 

to determine the statistical significance of the multiplicative interaction.

In secondary analyses, we examined effect modification by ppBMI, among male and female 

offspring separately, by fitting the previously described models, stratified by ppBMI (normal 

and overweight/obese). We also fit models with indicators for maternal BW, ppBMI, and an 

interaction term between maternal BW and ppBMI to determine statistical significance of 

the multiplicative interaction. Given the small number of women who were underweight pre-

pregnancy (N=161), particularly in strata of both offspring sex and maternal BW (modeled 

as a linear spline or binary variable), this group was excluded in the ppBMI effect 

modification analyses.

Statistical significance was determined using a two-sided p-value<0.05. All analyses were 

carried out using Stata version 13.1, software (Stata Corporation, College Station, Texas).

RESULTS

About half of the offspring were male (51.2%) and the majority of mothers were white 

(86.4%), nulliparous (62.1%), married (91.5%), and with a high school education (96.6%) 

(Table 1). Overall, offspring BW increased 18.51 grams (95%CI: 15.28, 21.75) and the risk 

of LBW decreased 5% (95%CI: 0.92, 0.98) per 100 grams increase of maternal BW (Table 

2). Additional adjustment for pregnancy complications and potential mediators did not 

substantially alter these estimates. The increase in offspring BW, per 100 grams of maternal 

BW, was statistically significant among mothers with normal BW (β=22.29 grams; 95%CI: 
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17.57, 27.02) or macrosomia (β=23.41 grams; 95%CI: 6.87, 39.96), but not among LBW 

mothers (β=−8.61 grams; 95%CI: −22.88, 5.65). The change in slope between LBW and 

normal BW mothers was statistically significant (p-value<0.0001), the change in slope 

between normal BW and macrosomic mothers was not statistically significant (p-

value=0.908), and the linear spline model fit the maternal-offspring BW association better 

than the continuous model (LRT p-value=0.0005) (Table 2).

In sex-stratified models for all offspring, regardless of maternal BW, increases in offspring 

BW per 100 grams of maternal BW were similar among males (β=16.90 grams; 95%CI: 

12.30, 21.49) and females (β = 20.17 grams; 95%CI: 15.59, 24.74) (p-value for 

interaction=0.444) (Table 3). Similarly, the reduction in risk of offspring LBW per 100 

grams of maternal BW was similar among male (OR = 0.96; 95%CI: 0.92, 1.00) and female 

(OR = 0.94; 95%CI: 0.91, 0.98) (p-value for interaction=0.785). Among male offspring, 

offspring BW increased by 23.47 grams (95%CI: 16.75, 30.19) or 25.21 grams (95%CI: 

4.35, 46.07) per 100 grams of maternal BW among mothers with normal BW or 

macrosomia, respectively, while it decreased by 31.39 grams (95%CI: −51.63, −11.15) per 

100 grams of maternal BW among LBW mothers (LRT p-value<0.0001) (Table 3). Among 

female offspring, offspring BW increased by 16.22 grams (95%CI: −4.12, 36.55), 20.63 

grams (95%CI: 13.94, 27.31) or 21.69 grams 8 (95%CI: −6.03, 49.41) per 100 grams of 

maternal BW among mothers with LBW, normal BW or macrosomia (LRT p-value=0.9163). 

The associations observed among male and female offspring were statistically significantly 

different (p-value for interaction=0.0148, Figure). Female offspring of LBW mothers 

weighed less, on average, than female offspring of non-LBW mothers (β=−228.34; 95%CI: 

−313.71, −142.97) and were at increased risk of being LBW themselves (OR=2.64; 95%CI: 

1.48, 4.72) (Table 3). Male offspring of LBW mothers also weighed less, on average, than 

male offspring of non-LBW mothers (β=−100.96; 95%CI: −193.19, −8.73), although the 

reduction of BW was not as pronounced as the reduction in BW among female offspring (p-

value for interaction=0.059). Similarly, the potential increase in risk of LBW among male 

offspring was not statistically significant (OR=1.16; 95%CI: 0.51, 2.61) and attenuated in 

comparison with the LBW risk among female offspring (p-value for interaction=0.126).

Findings from analyses stratified by ppBMI were similar, in general, to those that were 

observed in overall sex-stratified analyses, particularly among those with normal ppBMI 

(Table 4). The associations observed among male (p=0.8132) or female (p=0.3463) offspring 

were not statistically significantly different between normal and overweight/obese ppBMI 

categories.

DISCUSSION

Maternal BW was positively associated with offspring BW, particularly among mothers with 

normal BW or macrosomia. Offspring of LBW mothers weighed less than those born to 

non-LBW mothers and were about twice as likely to be LBW themselves. We also found 

evidence for potential effect modification of the maternal-offspring BW associations by 

offspring sex. We identified a J-shaped relationship among males and a linear relationship 

among females. The reduction in offspring BW and the higher risk of offspring LBW among 

LBW mothers, compared with non-LBW mothers, was more pronounced and statistically 
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significant among female offspring. The sex-specific maternal-offspring BW associations 

were not modified by ppBMI.

Findings of this study are consistent with previous reports which have described an overall 

positive association between maternal and offspring BW [15–17] and evidence of a non-

linear relationship [18, 20, 21]. For instance, Hackman et al. and Klebanoff et al. have 

suggested a J-shaped relationship between mean maternal and offspring BW [20, 21]. Our 

findings suggest that this relationship is determined primarily by male offspring. The 

mechanisms by which maternal and offspring BW are associated are not fully understood. 

They may include shared genetic attributes and environmental exposures [29], or 

intergenerational socioeconomic factors and neighborhood context [30, 31] which 

independently influence the outcome in both mother and offspring; or fetal programming of 

offspring birth size, due to maternal in utero growth restriction [29]. Our study extends 

previous work by specifically examining maternal-offspring BW association differences 

across the distribution of maternal BW (i.e. LBW, normal BW, macrosomia), and supporting 

the conclusion that an increase in maternal BW is predictive of an increase in offspring BW 

only among normal BW and macrosomic mothers.

Few studies have explored offspring sex-specific differences in maternal-offspring BW 

associations. Carr-Hill et al. (1987) reported correlations between maternal and offspring 

BW among mother-daughter pairs (Pearson’s correlation r = 0.219; 95%CI: 0.102, 0.330) 

that were similar to corresponding correlations among mother-son pairs (Pearson’s 

correlation r = 0.207; 95%CI: 0.082, 0.326) [22]; Voldner et al. (2009) reported similar 

associations from multivariable regression models for female offspring (β=184 grams per 1 

kg of maternal BW; 95%CI: 87, 280) and male offspring (β=148 grams per 1 kg of maternal 

BW; 95%CI: 51, 243) [32]. To our knowledge, our study is the first to report sex-specific 

differences in patterns of maternal-offspring BW associations and transgenerational 

transmission of LBW risk. We found non-linear relationships among male offspring and 

linear relationships among female offspring. Maternal LBW-offspring LBW associations 

were more pronounced among females. The distribution of BW has been conceptualized as a 

Gaussian distribution with two subpopulations – a predominant normal distribution (primary 

component) and a residual distribution (secondary component) [33]. The births in the 

residual distribution are believed to be different from those in the predominant distribution, 

and those in the lower tail are believed to be particularly at higher risk for poor health 

outcomes [33]. LBW mothers are more likely to fall into the secondary component of the 

BW distribution. Factors that cause these births to differ from those in the primary 

component of the BW distribution may also modify the maternal-offspring BW association. 

However, additional research is needed test this hypothesis.

The role of offspring sex in associations of maternal characteristics with trajectories and 

ultimate potentials of fetal growth, development and adulthood health are active areas of 

investigation [34, 35]. Most prior research has dealt with exposures and maternal 

characteristics during the perinatal period [36, 37] rather than taking a life course approach. 

Differences in fetal growth [38] and survival [39] among male and female offspring have 

been well documented, although mechanisms are not well understood. Studies indicate that 

male and female offspring respond differently to adverse environmental exposures [40, 41] 
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and nutritional deficiencies [42, 43], complications of pregnancy [44] and maternal 

phenotypic factors [45]. The role of sex chromosomes [46] and sex-specific epigenetic 

programming [46, 47] in the placenta are believed to influence the functioning of the organ 

in a sex-specific manner, thus contributing to the sexual dimorphism of fetal growth. The 

sexes maximize fitness differently depending on in utero conditions and the timing and type 

of exposures or constraints. These coping strategies have implications for both fetal growth 

and susceptibility to disease over the life course [48]. Based on the growing literature on sex 

differences in fetal growth, it has been proposed that male offspring respond to the 

intrauterine environment so as to allow for continued normal growth, which places them at 

risk for compromise if exposed to subsequent insults. Female offspring, on the other hand, 

are believed to modify growth trajectory in order to improve chances of survival [45, 49]. 

The linearity and non-linearity of the maternal-offspring BW association among females and 

males, respectively, along with the stronger associations between maternal and offspring 

LBW among female offspring in our study support sexual dimorphism in the influence of 

maternal BW on offspring BW.

Previous studies suggest a positive association between BW and adulthood BMI [24], and 

several others report a positive association between ppBMI and offspring BW in offspring 

sex-adjusted analyses [25, 50]. To our knowledge, no prior study evaluated potential effect 

modification of maternal-offspring BW associations by ppBMI. In the current study, we did 

not find evidence for effect modification. Hyppopen et al. reported that adjustment for 

ppBMI in a linear regression model did not affect the maternal-offspring BW association 

much [51]. We conducted post-hoc analyses to examine whether ppBMI mediated maternal-

offspring BW associations using the potential outcomes approach to mediation analysis [52]. 

Pre-pregnancy BMI mediated a small proportion of the overall maternal-offspring BW 

associations (3.09%; 95%CI: 2.64, 3.77; p-value=0.026), but mediation did not appear to be 

statistically significant in offspring sex-specific analyses (Supplementary File 3). We also 

conducted post-hoc analyses to evaluate potential effect modification of maternal-offspring 

BW associations by maternal weight gain during pregnancy. The sex-specific differences in 

maternal-offspring BW associations, specifically among LBW mothers, were observed only 

among women who had inadequate weight gain during pregnancy (Supplementary File 4).

The strengths of this study include the prospective cohort study design, the well-

characterized study population, large sample size, the modeling of the exposure using 

different forms (including linear splines), examining sex-specific associations, exploring 

potential effect modification by ppBMI and weight gain during pregnancy, and exploring 

potential mediation by ppBMI. Our study also has several limitations that deserve mention. 

First, we used self-reported maternal BW and pre-pregnancy height and weight. This may 

lead to potential misclassification of the outcome and biased estimates of the association(s) 

of interest. However, self-reported height and weight have been found to have high 

sensitivity and specificity among females [53] and self-reported BW has been found to have 

moderate to substantial agreement with recorded BW [54, 55]. In addition, the cohort study 

design will minimize the risk of differential misclassification. Second, we performed 

complete case analyses, excluding from the final analyses participants with any missing data 

on the variables of interest. Almost 14% of participants with live-births were excluded 

through list-wise deletion, the majority of whom were missing data on the exposure of 
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interest. These participants were more likely to be non-white, unmarried, multiparous, 

obese, have lower educational attainment, and their infants were more likely to be born 

preterm. Complete case analysis decreases efficiency, and a violation of the untestable 

‘missing completely at random’ assumption may lead to biased estimates. Finally, racial/

ethnic minorities were not well represented in our study population. Researchers have found 

potential race-specific differences in transgenerational LBW risk [56]. Unfortunately, we 

were not able to assess potential effect modification by race. Generalizability of our findings 

may be limited to other populations that have comparable characteristics to the Omega study 

population.

In conclusion, we found that maternal and offspring BW were positively associated, 

particularly among mothers with normal and macrosomic BW. Offspring sex modified 

maternal and offspring BW associations. Our findings highlight the importance of 

examining sex differences in transgenerational fetal growth studies, and, provide guidance 

and motivation for future investigations of potential mechanisms for maternal-offspring BW 

associations. This is of public health significance as it could help improve identification of 

populations at risk for poor birth outcomes and institute preventative and/or early diagnostic 

intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. Sex-specific associations of maternal and offspring birthweight
Fitted values. Model adjusted for potential confounding variables: maternal race, family 

history of diabetes, maternal smoking history and educational attainment; precision 

variables: age (as a linear spline), marital status, and parity
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Table 1

Selected Study Participant Characteristics (N=3736)

Mean (SD)

Maternal age (years) 32.75 (4.43)

Maternal birthweight (grams) 3,271.86 (529.78)

Offspring birthweight (grams) 3,451.63 (545.83)

Maternal pre-pregnancy BMI (kg/m2) 23.51 (4.73)

N Percentage

Male offspring 1,911 51.15

Maternal race

 White 3,228 86.40

 Black 61 1.63

 Asian 259 6.93

 Other 188 5.03

Smoking

 Never 2,722 72.86

 Former smoker 797 21.33

 Smoked during pregnancy 217 5.81

Nulliparous 2,320 62.10

≤High school education 126 3.37

Unmarried 318 8.51

Gestational diabetes 186 4.98

Family history of diabetes 539 14.43

Preeclampsia 97 2.60

Chronic hypertension 155 4.15

Maternal pre-pregnancy BMI

 Underweight 161 4.31

 Normal weight 2,642 70.72

 Overweight/obese 933 24.97

Maternal weight gain during pregnancy

 Inadequate 892 23.88

 Adequate 1,499 40.12

 Excessive 1,345 36.00

Offspring birthweight

 Low birthweight 156 4.18

 Normal birthweight 3,049 81.61

 Macrosomia 531 14.21

Maternal birthweight

 Low birthweight 311 8.32

 Normal birthweight 3,128 83.73

 Macrosomia 297 7.95
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Note: BMI = body mass index. Underweight (<18.5 kg/m2), normal weight (18.5–24.99 kg/m2) and overweight/obese (≥25 kg/m2).

Weight gain during pregnancy based on Institute of Medicine recommendations per BMI category
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Table 2

Associations of maternal birthweight with offspring birthweight and offspring risk of low birthweight

Infant Birthweight (grams) – Linear Regression Analyses

Model 1
βa

95% CI

Model 2
βb

95% CI

Model 3
βc

95% CI

Maternal BW (grams), continuousd (N=3736) 19.51**
(16.26, 22.76)

18.51**
(15.28, 21.75)

16.15**
(13.37, 18.93)

 Adjusted R2 0.036 0.055 0.305

Maternal BW (grams), linear splined

 LBW mothers (N=311) −7.07
(−21.42, 7.28)

−8.61
(−22.88, 5.65)

−8.61
(−20.86, 3.63)

 NBW mother (N=3,128) 23.18**
(18.44, 27.92)

22.29**
(17.57, 27.02)

19.77**
(15.70, 23.83)

 Macrosomic mothers (N=297) 24.41*
(7.78, 41.03)

23.41*
(6.87, 39.96)

19.64*
(5.44, 33.85)

 Adjusted R2 0.039 0.058 0.308

Maternal LBW status, categoricale −183.47**
(−246.58, −120.35)

−167.83**
(−230.37, −105.28)

−131.59**
(−185.36, −77.82)

 Adjusted R2 0.008 0.030 0.285

Infant Low Birthweight Risk – Logistic Regression Analyses

Model 1

ORa
95% CI

Model 2

ORb
95% CI

Model 3

ORc
95% CI

Maternal BW (grams), continuousd(N=3736) 0.94**
(0.92, 0.97)

0.95**
(0.92, 0.98)

0.95*
(0.92, 0.99)

Maternal BW (grams), linear splined

 LBW mothers (N=311) 0.95
(0.87, 1.05)

0.96
(0.87, 1.06)

0.94
(0.83, 1.06)

 NBW mother (N=3,128) 0.95
(0.91, 0.99)

0.95*
(0.91, 1.00)

0.97
(0.92, 1.02)

 Macrosomic mothers (N=297) 0.79
(0.56, 1.12)

0.78
(0.55, 1.11)

0.82
(0.58, 1.17)

Maternal LBW status, categoricale 2.09*
(1.33, 3.28)

1.98*
(1.26, 3.13)

1.73
(0.96, 3.11)

Note: BW = birthweight. LBW = low birthweight.

*
p-value < 0.05;

**
p-value < 0.0001; Adjusted R2 = variation in offspring BW explained

a
Model 1 - Unadjusted: crude change in mean infant BW.

b
Model 2 - adjusted: adjusted for potential confounding variables: maternal race, family history of diabetes, maternal smoking history and 

educational attainment; precision variables: age (as a linear spline), marital status, parity, and offspring-sex.

c
Model 3 –adjusted: adjusted for Model 2 variables plus gestational diabetes, preeclampsia, chronic hypertension, pre-pregnancy body mass index, 

and preterm birth.
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d
Per 100 grams maternal birthweight.

e
Comparing LBW mothers and non-LBW mothers (reference).
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Table 3

Offspring sex-specific associations of maternal birthweight with offspring birthweight and offspring risk of 

low birthweight

Infant Birthweight (grams) – Linear Regression Analyses

βa
95% CI

Male
(N=1,911)

Female
(N=1,85)

Maternal BW (grams), continuousb (N=3736) 16.90**
(12.30, 21.49)

20.17**
(15.59, 24.74)

 Interaction P-value 0.444

 Adjusted R2 0.039 0.048

Maternal BW (grams), linear splineb

 LBW mothers (N=311) −31.39*
(−51.63, −11.15)

16.22
(−4.12, 36.55)

 NBW mother (N=3,128) 23.47**
(16.75, 30.19)

20.63**
(13.94, 27.31)

 Macrosomic mothers (N=297) 25.21*
(4.35, 46.07)

21.69
(−6.03, 49.41)

 Interaction P-value 0.015

 Adjusted R2 0.050 0.047

Maternal LBW status, categoricalc −100.96*
(−193.19, −8.73)

−228.34**
(−313.71, −142.97)

 Interaction P-value 0.059

 Adjusted R2 0.015 0.024

Infant Low Birthweight Risk – Logistic Regression Analyses

ORa
95% CI

Male
(N=1,916)

Female
(N=1,829)

Maternal BW (grams), continuousb (N=3736) 0.96*
(0.92, 1.00)

0.94*
(0.91, 0.98)

 Interaction P-value 0.785

Maternal BW (grams), linear splineb

 LBW mothers (N=311) 1.11
(0.88, 1.41)

0.91
(0.81, 1.02)

 NBW mother (N=3,128) 0.94
(0.88, 1.01)

0.96
(0.91, 1.03)

 Macrosomic mothers (N=297) 0.74
(0.41, 1.31)

0.82
(0.52, 1.30)

Interaction P-value 0.443

 Maternal LBW status, categoricalc 1.16
(0.51, 2.61)

2.64*
(1.48, 4.72)

 Interaction P-value 0.126

Note: BW = birthweight. LBW = low birthweight.
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*
p-value < 0.05;

**
p-value < 0.0001; Adjusted R2 = variation in offspring BW explained

a
Model adjusted for potential confounding variables: maternal race, family history of diabetes, maternal smoking history and educational 

attainment; precision variables: age (as a linear spline), marital status, parity, and offspring-sex.

b
Per 100 grams maternal birthweight.

c
Comparing LBW mothers and non-LBW mothers (reference).
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Table 4

Associations of maternal birthweight with offspring birthweight and offspring risk of low birthweight, by 

maternal pre-pregnancy body mass index

Infant Birthweight (grams) – Linear Regression Analyses

βa
95% CI

Male
(N=1,814)

Female
(N=1,761)

Normal pre-pregnancy BMI (18.5–25kg/m2)

Maternal BW (grams), continuousb 18.15**
(12.78, 23.52)

17.01**
(11.70, 23.31)

Maternal BW (grams), linear splineb

 LBW mothers (N=212) −30.97*
(−55.17, −6.77)

9.15
(−13.65, 31.95)

 NBW mother (N=2,238) 24.60**
(16.93, 32.27)

19.93**
(12.18, 27.69)

 Macrosomic mothers (N=192) 29.24*
(1.54, 56.94)

4.02
(−28.33, 36.37)

Maternal LBW status, categoricalc −115.47*
(−221.89, −9.04)

−157.27*
(−255.99, −58.55)

Overweight and obese pre-pregnancy BMI (>25kg/m2)

Maternal BW (grams), continuousb 13.85*
(4.12, 23.57)

25.05**
(15.43, 34.67)

Maternal BW (grams), linear splineb

 LBW mothers (N=84) −41.67
(−84.29, 0.95)

25.73
(−23.05, 74.52)

 NBW mother (N=757) 20.14*
(5.09, 35.20)

22.29*
(7.91, 36.66)

 Macrosomic mothers (N=92) 26.92
(−11.02, 64.87)

44.11
(−11.38, 99.61)

Maternal LBW status, categoricalc −23.06
(−225.94, 179.83)

−397.21**
(−577.84, −216.58)

Note: BW = birthweight. LBW = low birthweight. BMI = body mass index.

*
p-value < 0.05;

**
p-value < 0.0001

a
Model adjusted for potential confounding variables: maternal race, family history of diabetes, maternal smoking history and educational 

attainment; precision variables: age (as a linear spline), marital status, parity, and offspring-sex.

b
Per 100 grams maternal birthweight.

c
Comparing LBW mothers and non-LBW mothers (reference).
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