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Abstract

Purpose: The aim of this study was to evaluate the use of a Bayesian penalized
likelihood reconstruction algorithm (Q.Clear) for 89Zr-immunoPET image
reconstruction and its potential to improve image quality and reduce the
administered activity of 89Zr-immunoPET tracers.

Methods: Eight 89Zr-immunoPET whole-body PET/CT scans from three 89Zr-
immunoPET clinical trials were selected for analysis. On average, patients were
imaged 6.3 days (range 5.0–8.0 days) after administration of 69 MBq (range 65–76
MBq) of [89Zr]Zr-DFO-daratumumab, [89Zr]Zr-DFO-pertuzumab, or [89Zr]Zr-DFO-
trastuzumab. List-mode PET data was retrospectively reconstructed using Q.Clear
with incremental β-values from 150 to 7200, as well as standard ordered-subset
expectation maximization (OSEM) reconstruction (2-iterations, 16-subsets, a 6.4-
mm Gaussian transaxial filter, “heavy” z-axis filtering and all manufacturers’
corrections active). Reduced activities were simulated by discarding 50% and
75% of original counts in each list mode stream. All reconstructed PET images
were scored for image quality and lesion detectability using a 5-point scale.
SUVmax for normal liver and sites of disease and liver signal-to-noise ratio were
measured.

Results: Q.Clear reconstructions with β = 3600 provided the highest scores for
image quality. Images reconstructed with β-values of 3600 or 5200 using only
50% or 25% of the original counts provided comparable or better image quality
scores than standard OSEM reconstruction images using 100% of counts.

Conclusion: The Bayesian penalized likelihood reconstruction algorithm Q.Clear
improved the quality of 89Zr-immunoPET images. This could be used in future
studies to improve image quality and/or decrease the administered activity of
89Zr-immunoPET tracers.
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Introduction
There are an increasing number of investigations of immunoPET for multiple clinical ap-

plications, including targeted imaging of HER2, CD38, PD-L1, CA9, PSMA, and others

[1–7]. Zirconium-89 (89Zr) is most often chosen as the imaging radionuclide for immuno-

PET due to its favorable physical and chemical properties, including a 78-h half-life that is

compatible with the relatively long times (on the order of a week) required to achieve op-

timal target-to-background differentials with antibody tracers [1, 4, 8]. However, 89Zr is

not ideal, as there are issues with both patient radiation dose and image quality.

The positron yield of 89Zr is only 23% and it emits a (non-coincident) 909 keV

gamma ray photon in 100% of disintegrations. These characteristics, coupled with pro-

tracted antibody bio-kinetics, lead to relatively high radiation doses to patients. For ex-

ample, the 89Zr-labeled anti-PSMA monoclonal antibody J591 ([89Zr]Zr-DFO-J59)

delivers a 25 times higher whole-body radiation dose (mGy/MBq) than 2-[18F]FDG [9,

10]. There is thus an incentive to reduce administered activities. Our experience at

MSKCC reflects this; initial 89Zr-immunoPET studies featured administered activities

of approximately 185MBq (5 mCi) [9, 11–13], while more recent work has used ap-

proximately 74MBq (2 mCi) [4, 5, 14]. In other centers, even lower activities of ap-

proximately 37MBq (1 mCi) [1, 6] have been used.

Reducing administered activity may lead to a reduction in image quality. In addition,
89Zr-immunoPET agents generally have lower image quality in comparison to 18F-

tracers due to constraints on administered activity, lower positron yield, longer post-

administration imaging times and practical limits on acquisition times. For these rea-

sons, the use of modern image reconstruction methods is especially important for

image optimization [15].

PET image quality may be improved using reconstruction algorithms that decrease

noise and/or increase spatial resolution. One such method, Q.Clear (GE Healthcare), a

Bayesian penalized likelihood reconstruction algorithm, is designed to minimize image

noise while allowing full convergence, thus increasing the signal-to-noise ratio [16–18].

Noise is suppressed by the use of a penalty term, a function of the difference between

neighboring voxels and their sum [19]. A factor (termed β) controls the relative

strength of the penalty function and is the only selectable input variable to the algo-

rithm [16, 19–22]. Q.Clear uses a block sequential regularized expectation

maximization (BSREM) algorithm that allows each voxel to achieve full convergence,

potentially providing a more accurate SUV [16]. This contrasts with conventional

ordered-subset expectation maximization (OSEM) that has to be stopped after a few it-

erations in order to prevent excessive image noise [23]. Previous studies have shown

that Q.Clear improves lesion signal-to-noise ratio (SNR) for both 2-[18F]FDG PET/CT

[16–18, 21, 24] and [68Ga]Ga-RM2/[68Ga]Ga-PSMA-11 PET/MRI [25] compared to

OSEM reconstruction.

For immunoPET imaging, the key clinical issue is to minimize lesion misidentifica-

tion (either false positive or false negative) resulting from image noise or excessive

smoothing. Image quality should be interpreted in this context, and although quantita-

tive accuracy is desirable, it is less critical. Radiation dosimetry is an important charac-

teristic of an immunoPET agent and largely sets how much can be administered to

patients, but it is not necessary to estimate this on a patient-by-patient basis, as it

would be for a therapeutic agent. Indeed, for most patients, immunoPET imaging
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consists of a single scan at typically 5–7 days post administration, and dosimetry, based

on the areas under activity-time curves, is not an option. Other aspects of immunoPET

quantification such as lesion SUV may, in the future, have utility in longitudinal studies

of disease response but, at present, these types of study are largely precluded by the

relatively high radiation doses produced by immunoPET agents. In order to facilitate

such longitudinal studies, radiation doses would have to be reduced by minimizing ad-

ministered activities and employing advanced reconstruction techniques. In this paper,

our goal was to evaluate the use of Q.Clear for 89Zr-immunoPET image reconstruction

and its potential to improve image quality and to facilitate a reduction in administered

activity of 89Zr-immunoPET tracers.

Material and methods
Patients

This was a retrospective study of 89Zr-immunoPET/CT scans that were accrued on

three prospective clinical trials (NCT02286843, NCT03665155, and NCT02675829) [2–

5, 26]. All clinical studies were performed in compliance with the Health Insurance

Portability and Accountability Act and with Institutional Review Board approval and

patient informed consent. A total of eight 89Zr-immuno-PET scans (4 men, 4 women,

mean age 65.5 years, range 41.5–80.5 years) were selected based on the presence of

PET positive lesions and the availability of stored list mode data (Table 1). These eight

scans included four [89Zr]Zr-DFO-daratumumab scans for CD38-targeted imaging of

myeloma, two [89Zr]Zr-DFO-pertuzumab scans for HER2-targeted imaging of breast

cancer, and two [89Zr]Zr-DFO-trastuzumab scans for HER2 targeted imaging of lung

cancer.

PET/CT and reconstruction

Patients were imaged at a mean time of 6.3 days (range 5.0–8.0) following administra-

tion of a mean of 69MBq (range 65–76) 89Zr-immunoPET tracer. Whole body (WB)

Table 1 Details of eight 89Zr-immunoPET patients

Scan
#

Tracer Sex Weight
in kg

Administered
activity in MBq

Malignancy Analyzed tracer avid lesions

1 89ZR-
Daratumumab

M 87.5 66.2 Multiple
Myeloma

2nd Rib right, Os ileum right,
Vertebrae L3

2 89ZR-
Daratumumab

F 85.3 68.0 Multiple
Myeloma

Mandibula right, Clavicle right, Os
ilium right

3 89ZR-
Daratumumab

M 90.2 65.0 Multiple
Myeloma

Femora left, Scapula left, 7th Rib
left, Femora left

4 89ZR-
Daratumumab

M 110.7 68.3 Multiple
Myeloma

Os ileum right, Os sacrum, Soft
tissue left shoulder

5 89ZR-
Pertuzumab

F 66.0 70.7 Breast
Cancer

Vertebrae Th12, Femora left, Soft
tissue retroperitoneal

6 89ZR-
Pertuzumab

F 66.0 71.4 Breast
Cancer

Os ileum right, Os ischii right

7 89ZR-
Trastuzumab

F 52.0 67.0 Lung
Cancer

Os ilium left, Spleen

8 89ZR-
Trastuzumab

M 75.0 75.9 Lung
Cancer

Vertebrae T11, Node portocaval,
Vertebrae T11, Scapula right
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images were acquired from skull apex to midthigh on a dedicated research PET/CT

scanner (GE Discovery 710; lutetium yttrium orthosilicate (LYSO) crystals, measured

system sensitivity 7.1 cps/kBq) in 3-dimensional mode with a mean emission time per

bed position of 6.9 min (range 6.0–8.0). At the time of imaging, the mean total activity

in the WB PET images was 14MBq (range 9–17). Low-dose CT scans were acquired

with an x-ray tube current of 80 mA. Images were first reconstructed using our stand-

ard clinical parameters featuring ordered subset expectation maximization (OSEM) into

a 128 × 128 matrix; voxel size 0.098 ml (5.47 × 5.47 × 3.27 mm) with 2-iterations, 16-

subsets, a 6.4-mm Gaussian transaxial filter, “heavy” z-axis filtering, and all manufac-

turers’ corrections active (CT-based attenuation, scatter, time-of-flight (TOF), and

point-spread-function (PSF)). Subsequently, list-mode PET data for each patient was

time-binned to include 100% (no counts discarded), 50% (50% of counts discarded),

and 25% (75% of counts discarded) of the original counts. The standard OSEM recon-

struction with 100% of original counts was used as a reference for comparison to all

other reconstructions. Additionally, 100% count data were reconstructed using the

Q.Clear BSREM algorithm into a 256 × 256 matrix; voxel size 0.024 ml (2.73 × 2.73 ×

3.27 mm) with incremental β-values of 150, 300, 600, 1000, 1600, 2400, 3600, 5200, and

7200. For the simulated reduced doses (corresponding to 25% and 50% of the original

counts), incremental β-values of 1600, 2400, 3600, 5200, and 7200 were used.

The rationale for choosing the abovementioned reconstructions was twofold: firstly,

to evaluate the optimal β-value for the current 89Zr-immuno-PET clinical workflow,

and secondly, to evaluate the possibility of decreasing administered activity while main-

taining image quality due to improved reconstruction.

Image analysis

Clinical assessment

Image reading was performed by a radiologist dually boarded in diagnostic radiology

and nuclear medicine with 15 years of experience in PET/CT including multiple 89Zr-

immunoPET tracers (GAU) and a radiologist with 5 years of experience in PET/CT im-

aging (JK) in consensus. Readers were not informed of the nature of the data. Different

reconstructed images of each patient were presented separately but in random order to

the readers in a single reading session, so the readers were aware of their previous

evaluation. However, retrospective changes in evaluation were not allowed. All PET/CT

data sets for each patient were interpreted with respect to lesion detectability and sub-

jective image quality, applying a 5-point ordinal (see Table 2). Thereafter, average

values were calculated for each 89Zr-immuno-PET agent.

Table 2 Definition of the applied 5-point ordinal scale for image quality and lesion detectability

Rating Criteria

1 Non-diagnostic: inability to discern lesions from background

2 Poor: only subtle distinction of lesions from background

3 Moderate: ability to discern lesions with significant noise

4 Good: ability to discern lesions with low noise

5 Excellent: ability to discern lesions without noise
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Objective measurements

Volumes of interest (VOI) were drawn round index lesions and maximum standardized

uptake values (SUVmax) measured. In addition, VOI were drawn within the liver, ex-

cluding gross anatomical or uptake heterogeneities, and the mean (SUVmean) and stand-

ard deviation (σSUV) used to derive a liver signal-to-noise ratio (SNR) according to

SNR = SUVmean/σSUV. For each patient, VOIs were drawn on an image set that was sub-

jectively judged to be most clear using Hybrid Viewer Gold Client v2.3 (HERMES Med-

ical Solutions AB, Stockholm, Sweden) and copied to all other image sets.

Results
Image features for different β

Figure 1 is an example of a patient imaged with [89Zr]Zr-DFO-trastuzumab that illus-

trates the effects of using different values of β in Q.Clear BSREM reconstruction. Im-

ages reconstructed with β-values in the range 150–600 (Fig. 1, a–c) were noisier and of

inferior quality to the OSEM reference (Fig. 1, j) while β-values of 1000 generated im-

ages (Fig. 1, d) approximately similar to OSEM. Q.Clear image quality improved with

increasing β from 1600 to 3600 (Fig. 1, e–g). For β-values of 5200–7200 (Fig. 1, h, i),

images became over-smoothed and lesions lost conspicuity.

Subjective evaluation of image quality

Standard OSEM reconstructions were rated as “moderate” (mean score: 3 out of 5) for

all three 89Zr-immunoPET agents. In general, Q.Clear images with low β-values (150–

600) were deemed inferior in quality to OSEM, with image quality improving around β

= 1000 and being approximately equivalent to OSEM for β = 1600. Image quality con-

tinued to improve up to β = 3600, where the Q.Clear reconstructions of all three 89Zr-

Fig. 1 MIP images of [89Zr]Zr-DFO-trastuzumab reconstructed using 100% of original counts with Q.Clear
BSREM and β-values of 150, 300, 600, 1000, 1600, 2400, 3600, 5200, and 7200 (a–i, respectively) together
with the standard OSEM reconstruction (j)
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immunoPET agents were judged to be superior to standard OSEM reconstruction. At β

= 3600, the mean image scores were 4 out of 5 for [89Zr]Zr-DFO-trastuzumab, 3.75 out

of 5 for [89Zr]Zr-DFO-daratumumab, and 3.5 out of 5 for [89Zr]Zr-DFO-pertuzumab.

For higher β-values (5200, 7200), image quality evaluation decreased to approximately

the level of the standard OSEM reconstructions (Fig. 2).

To simulate reduced administered tracer activity, events were discarded in each list mode

stream to reduce counts to 50% and 25% of the original values and Q.Clear BSREM recon-

structions were performed using β-values of 1600 and higher. As expected, as counts de-

creased from 100 to 50%, and again from 50 to 25%, there was a reduction in image quality.

Of note, for Q.Clear with β-values between 2400 and 5200, image quality using only 50% of

counts was greater than or equal to standard OSEM performed with 100% of counts (Fig. 3).

For example, for [89Zr]Zr-DFO-trastuzumab, Q.Clear with β = 3600 and only 50% of original

true counts produced images with a mean score of 4, compared with a mean score of 3 for

standard OSEM reconstructions and 100% of counts. Similar improvements with Q.Clear at

these specifications were seen in [89Zr]Zr-DFO-daratumumab and [89Zr]Zr-DFO-pertuzumab

images (mean score of 3.5, respectively). Even with only 25% original counts, Q.Clear BSREM

images of [89Zr]Zr-DFO-trastuzumab and [89Zr]Zr-DFO-pertuzumab with β-values of 3600–

5200 and images of [89Zr]Zr-DFO-daratumumab with β = 5200 produced image quality simi-

lar to standard OSEM images with 100% counts. Figure 4 demonstrates an example of

[89Zr]Zr-DFO-trastuzumab images reconstructed with standard OSEM (100% counts) and

Q.Clear BSREM with β = 3600 for 100%, 50%, and 25% of original counts.

Objective metrics of image quality

SUVmax

All estimates of SUVmax (lesions and normal liver) were maximal for β = 150 and de-

creased monotonically with increasing β. Figure 5 demonstrates how lesion and liver

Fig. 2 Subjective evaluation of image quality for three 89Zr-immunoPET agents using standard OSEM
reconstructions and Q.Clear BSREM with increasing β-values. See Table 2 for the description of the 5-point
scale. Q.clear reconstructions with a β-value of 3600 provided superior image quality to standard OSEM
reconstructions for all three 89Zr-immunoPET tracers
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SUVmax for [89Zr]Zr-DFO-pertuzumab varied with β. The very high values of SUVmax

for low values of β are a reflection of excessive image noise. For the [89Zr]Zr-DFO-per-

tuzumab cases of Fig. 5, Q.Clear SUVmax are approximately equivalent to OSEM for

β-values in the range 1000–1600. SUVmax continued to decrease as β increased and

images become progressively smoother. Similar patterns of changing SUVmax were

Fig. 3 Scores for image quality and lesion detectability for a [89Zr]Zr-DFO-trastuzumab, b [89Zr]Zr-DFO-
daratumumab, and c [89Zr]Zr-DFO-pertuzumab using OSEM reconstructions and Q.Clear BSREM with a β-
value of 3600 for different fractions of original counts, applying a 5-point ordinal scale
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also observed for [89Zr]Zr-DFO-daratumumab and [89Zr]Zr-DFO-trastuzumab (see

Table 3 and supplemental Figures S2, S3).

Liver SNR

The signal-to-noise ratio for liver VOI increased monotonically with increasing β for

Q.Clear reconstruction. Figure S1 illustrates how liver SNR varied for [89Zr]Zr-DFO-

pertuzumab with β for 100% counts. Q.clear SNR was greater than the corresponding

OSEM values for β ≥ 1000. For reduced count reconstructions, Q.clear SNR were

greater than full-count OSEM for β ≥ 1600 (50% counts) and β ≥ 2400 (25% counts).

Again, similar patterns of changing SNR were observed for [89Zr]Zr-DFO-daratumu-

mab and [89Zr]Zr-DFO-trastuzumab (see Table 3 and supplemental Figures S2, S3).

Discussion
This retrospective analysis of 89Zr-immuno-PET clinical image data demonstrated that

Q.Clear BSREM PET/CT image reconstruction using a β-value of 2400–3600 increased

image quality compared to standard OSEM reconstruction. In addition, the Q.Clear al-

gorithm enabled lower count datasets to generate images of comparable quality to full-

count OSEM images. We examined discarding 50% and 75% of the original counts as a

means of mimicking 50% and 25% of the administered activity and found comparable

Fig. 4 MIP images of a [89Zr]Zr-DFO-trastuzumab patient using a OSEM reconstruction with 100% original
counts and using Q.Clear BSREM with β = 3600 for b 100% original counts, c 50% original counts, and d
25% original counts, respectively. For 100% of counts, Q.Clear produced images with improved signal-to-
noise compared to standard OSEM. Even at only 25% of counts, Q.Clear produced images of comparable
quality to OSEM at 100% of counts

Fig. 5 SUVmax values for metastases and normal liver for [89Zr]Zr-DFO-pertuzumab images as β-value
increases from 150 to 7200. OSEM SUVmax also shown
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image quality to full-count OSEM following Q.Clear reconstruction with β-values in

the range 3600–7200. This provides a means to increase the image quality of future
89Zr-immuno-PET studies and/or decrease the administered activity of 89Zr-labeled

tracer.

Despite the improvements achieved by Q.Clear BSREM, no images in this study were

assessed as 5 on the ordinal scale of image quality, representing the ability to discern le-

sions without apparent noise. Even the best rated pictures with 100% counting and β =

3600 had some noise while providing adequate lesion contrast and were therefore rated

with 4 out of 5 points. Due to the associated physical and biokinetic constraints, 89Zr-

immuno-PET images are unlikely to provide equivalent image quality to 18F or 68Ga

tracers [27, 28].

In addition to subjective image quality, we examined the objective measurements of

lesion and liver SUVmax and liver SNR for all reconstructions. Low values of β (150–

600) were associated with very high SUVmax which tended to stabilize around β =

1000–1600 for 100% counts and at higher values for the reduced count images. Such

objective measures are important for the assessment of PET/CT studies [29] and indi-

cate that SUVmax values for metastases are likely to be overestimated for lower β-

values. Liver SNR generally increased with β all the way up to the 5200–7200 range,

reflecting a progressive increase in image smoothness. The potential downside to exces-

sive image smoothing is a consequential reduction in lesion SUVmax and/or contrast

recovery and compromised lesion detectability. However, notwithstanding the utility of

objective measurements, we found that the clinical read and interpretation was the

most reliable guide to image quality.

It is noteworthy that the β-values used in this study are much larger than those found

suitable for improving image quality for 18F-labeled tracers; these are typically in the

150–400 range [30]. This is a consequence of the very low effective activities present at

the time of imaging. For our patients, the average WB activity was 14MBq and, consid-

ering the 23% positron yield of 89Zr, would be equivalent to only 3.2MBq (0.09 mCi) of
18F. Obviously, the reduced count datasets would be equivalent to 50% and 25% of this

value. Clinical images were acquired with an average emission time per bed position of

7 min. For a typical 8–9 bed WB PET scan, this is approximately 1 h of emission data

collection and is at the upper limit of what is possible from the perspectives of both

clinic logistics and patient compliance.

Table 3 Q.Clear β parameters that produce SUVmax and liver SNR equal to that of OSEM
reconstruction using 100%, 50% and 25% of counts
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The relatively high radiation absorbed doses produced by 89Zr-immunoPET could

impede more widespread clinical implementation. In particular, reducing absorbed dose

is a prerequisite for particularly desirable sequential imaging studies (e.g., response as-

sessment, post-therapy surveillance) and for pediatric imaging applications. The only

way to reduce the radiation dose is to reduce the administered activity. This study sug-

gests that with Q.Clear BSREM and an appropriate choice of β-value, it may be possible

to reduce the administered activity of 89Zr-immunoPET tracer to 18.5MBq (0.5 mCi).

Limitations to this work include the fact that it was a single-center study with a small

number of patients and its further subdivision into three categories led to a reduced

statistical power. Patients were selected based on the presence of metastatic disease and

the availability of stored data for the additional reconstructions.

Conclusion
Q.Clear BSREM reconstructions improved the quality of 89Zr-immunoPET images

compared with standard OSEM reconstructions. For administered activities of approxi-

mately 74MBq and images acquired approximately 1 week post-administration, a β-

value of 3600 appears a reasonable choice for optimal image reconstruction. These

findings can be applied to future 89Zr-immunoPET studies to improve image quality

and may enable a reduction in the administered activity.
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