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SUMMARY

Metastatic colorectal cancer (CRC) is a major cause of cancer-related death, and incidence is rising in
younger populations (younger than 50 years). Current chemotherapies can achieve response rates above
50%, but immunotherapies have limited value for patients with microsatellite-stable (MSS) cancers. The pre-
sent study investigates the impact of chemotherapy on the tumor immune microenvironment. We treat
human liver metastases slices with 5-fluorouracil (5-FU) plus either irinotecan or oxaliplatin, then perform
single-cell transcriptome analyses. Results from eight cases reveal two cellular subtypes with divergent re-
sponses to chemotherapy. Susceptible tumors are characterized by a stemness signature, an activated inter-
feron pathway, and suppression of PD-1 ligands in response to 5-FU+irinotecan. Conversely, immune check-
point TIM-3 ligands are maintained or upregulated by chemotherapy in CRC with an enterocyte-like
signature, and combining chemotherapy with TIM-3 blockade leads to synergistic tumor killing. Our analyses
highlight chemomodulation of the immunemicroenvironment and provide a framework for combined chemo-
immunotherapies.

INTRODUCTION

Globally, colorectal cancer (CRC) ranks third in incidence and

second in cancer deaths.1 In addition, the incidence is increasing

in adults younger than age 50, in whom the diagnosis is

frequently delayed.2 Mortality from CRC is predominantly due

to metastatic disease, of which the liver is the most common

site.3

There have been significant recent advances in the treatment

of colorectal liver metastases (CRLM), including both local and

systemic therapies. Over the past 2–3 decades, we have wit-

nessed a doubling in overall 5-year survival rates for patients

with CRLMs, from 25% to 50% if resectable4; and from 10%

to 20% if not resectable.5 A dominant driver of this improvement

is the widespread implementation of effective combination

chemotherapy consisting of 5-fluorouracil (5-FU), oxaliplatin,

and irinotecan, which are often given in conjunction with anti-

vascular endothelial growth factor (VEGF) or anti-epidermal

growth factor receptor (EGFR) agents. Prospective clinical

studies have shown that FOLFOX (folinic acid/5-FU/oxaliplatin)

and FOLFIRI (folinic acid/5-FU/irinotecan) are equally effective

for CRLM, and each regimen achieves a response rate of

�60%.6,7 Accordingly, the National Comprehensive Cancer

Network guidelines recommend either combination as a first-

line therapy for CRLM, leaving the choice of regimen up to indi-

vidual physician preference. Studies of tumor response accord-

ing to molecular profiles have identified biomarkers and patho-

logic features that may predict treatment outcome, but these

data have yet to demonstrate clinical utility.8 The complexity of

the tumor microenvironment and the lack of understanding of

how chemotherapies affect different cellular compartments

within a cancer further limit our ability to individualize treatment

strategies to achieve maximal benefits while minimizing risk.

Another significant knowledge gap is in defining the role of

immunotherapy in microsatellite-stable (MSS, also known as

mismatch repair proficient) CRC, which represents the majority

of cases. Clinical trials using immune checkpoint inhibitors (ICI)

showed improved response and survival in patients with micro-

satellite-instable (MSI) CRC, but failed to demonstrate significant

benefits in MSS CRC.9,10 As a result, most patients with MSS

metastatic CRC receive some type of systemic chemotherapy.

Therefore, it is prudent to understand the impact of conventional

cytotoxic drugs on the tumor immune environment to rationally

design clinical trials of combined chemo-immunotherapies.

The scientific basis of such an approach comes from studies

examining the immune modulatory effects of conventional

anti-cancer drugs. Several groups have shown that topoisomer-

ase inhibitors and other DNA-damaging agents influence the
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Figure 1. Correlation between In Vitro and Clinical Responses

(A) Human CRLM slices from 5 tumors were treated with 5-FU/oxaliplatin (FX) and 5-FU/irinotecan (FI) for 72 h, and viability was assessed using an MTS assay.

Results represent the percentage of change in MTS absorbance (mean ± SD) between time 0 and 72 h. Aminimum of 3 tumor slices were used in each treatment.

C, vehicle control; STS, staurosporine as positive control. *p < 0.05 and **p < 0.005 compared to control based on pairwise comparison (Student’s t test).

(legend continued on next page)
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expression of programmed cell death protein 1 (PD-1) and pro-

grammed cell death ligand 1 (PD-L1) checkpoint proteins.

McKenzie et al.11 reported that topoisomerase 1 inhibitors,

including topotecan, camptothecin, and irinotecan, enhanced

T cell-mediated tumor kill in melanoma, while Iwai et al.12

showed that topotecan can upregulate MHC class 1 and inter-

feron-b (IFN-b) in breast cancer cells. Exposure to camptothecin

in SW620 colon cancer cells was found to upregulate PD-L1

expression along with T cell-associated cytokines.13 It has also

been shown that DNA breaks following either genotoxic drugs

or radiation induce an inflammatory response secondary to the

formation of micronuclei, which can influence the efficacy of

immune checkpoint blockade.14 Others have proposed that

chemotherapies, including topoisomerase inhibitors, regulate

PD-L1 expression through epithelial-mesenchymal transition

(EMT), which can be exploited in cancer immunotherapy.15

There is substantial evidence that chemotherapy modulates

the tumor immune environment in experimental models, but clin-

ical evidence to support these findings is limited.

To explore the phenotypic state of metastatic CRC and to pre-

dict susceptibility to chemotherapy, model systems have been

developed, ranging from the classic two-dimensional (2D)mono-

layer cultures and animal models, to the more recent 3D culture

systems and PDX mice.16 These models lack certain aspects of

human tumors, however, including an intact stroma and immune

microenvironment, as well as limitations related to clonal selec-

tion and latency. In this study, we describe an integrated system

for interrogating the response of intact human CRLM to conven-

tional chemotherapies at a single-cell level. In so doing, we iden-

tified a subset of MSS CRLM bearing a stem-like signature,

which respond to 5-FU/irinotecan in a way that elicit an anti-

tumor immune response. We further show that chemotherapy

modulates the expression of immune checkpoint molecules,

and thus alters the susceptibility of MSS CRLM to immuno-

therapy. Our findings provide insight into the future design of

combined chemo-immunotherapies.

RESULTS

Tumor Slice Cultures Provide a Direct Method to
Evaluate Tumor Response to Therapy
Systemic chemotherapies for solid tumors affect all of the com-

ponents of the tumor microenvironment. We set out to investi-

gate the impact of drugs on human CRLM through the use of

an organotypic slice culture platform (Figure S1A). We devel-

oped a standardized protocol to procure and maintain precisely

cut 250-mm thick slices from 6-mm cores of tumors obtained

fresh and under sterile conditions from patients undergoing liver

resection for CRLM, as described.17 In our hands, slices made

from human CRLM remain viable in culture for up to 4–6 weeks

(Figure S1B), but vary significantly depending on the extent of tu-

mor necrosis, often as a result of pre-operative chemotherapy.

We sought to determine whether the in vitro response to chemo-

therapy correlates with the clinical response by comparing

changes in viability based on MTS absorbance17 of the treated

tumor slices with preoperative clinical documentation of either

biochemical or radiographic response to the same drugs.

In vitro treatments consisted of drug combinations with 5-FU

(1 mg/mL) and either irinotecan (2 mg/mL) (FI) or oxaliplatin

(1 mg/mL) (FX) for 72 h. Folinic acid was omitted from our regimen

as it has no direct anti-tumor effects. The drug concentrations

were chosen based on clinically achievable serum levels. We

distributed consecutive slices evenly between treatment groups

as they represent biologic replicates.17

Figure 1A shows the in vitro response of fiveMSSCRLMs from

four patients. Based on the change in MTS absorbance, cases A

and C were responsive to FX, while only case A was sensitive to

FI. Cases B and D2were non-responsive to either drug combina-

tions, and case D1 was non-informative due to the loss of

viability of the slices. The corresponding clinical features and re-

sponses are shown in Figure 1B. Note that with the exception of

D1, the other informative cases showed concordance between

in vitro and in vivo responses. We further investigated case D

based on the interesting clinical observation that the two liver

metastases originating from the same primary cancer responded

differently to FOLFIRI. Tumor 1 demonstrated partial response,

while tumor 2 progressed such the 2 lesions were approximately

the same size (�2 cm) at the time of resection (Figure 1C). The

differential response of the 2 metastases was verified histologi-

cally, with tumor 1 being largely necrotic (�90%) with abundant

stroma and mucin and small residual areas of viable tumor

(�10%), compared with large areas of viable cancer cells seen

in tumor 2 (Figure 1D). Since the MTS assay measures global

viability, the predominance of necrosis explains the lack of activ-

ity from D1 slices, and this led us to explore changes in gene

expression based on bulk RNA extracted from the residual viable

cells. We found that the expression of proliferative markers such

as MKi67, BIRC5, and TOP2A in the two tumors correlated with

their clinical response (i.e., levels of expression diminished with

treatments in tumor 1 slices, while they increased in tumor 2 sli-

ces; Figure 1E). We found agreement between in vitro responses

of tumor slices and clinical behavior.

Single-Cell RNA Sequencing (scRNA-Seq) Identified
Seven Cellular Compartments in CRLM
Next, we proceeded to analyze the effects of chemotherapy on

the cellular constituents of human CRLM using scRNA-seq anal-

ysis. We confirmed that the RNA extracted from the slices

(B) Corresponding clinical characteristics of the cases shown in (A). CEA, carcinoembryonic antigen; LAR, low-anterior resection; mut, mutant; NED, no evidence

of disease; wt, wild type.

(C) Coronal contrast CT images of case D showing divergent tumor response to FOLFIRI in 2 liver metastases. Tumor 1 responded to chemotherapywhile tumor 2

progressed.

(D) H&E staining of the 2 tumors in case D. The blue (basophilic) cells highlight areas of viable tumors. Original magnification 1003. Scale bar, 200 mm.

(E) Temporal gene expression of 3 proliferation markers from bulk RNA-seq analyses of tumor slices derived from tumors D1 (left column) and D2 (right column) at

0, 24, 48, 72, and 96 h. The y axis represents fold change in transcript levels relative to day 0. Three tumor slices independent of the ones used in (A) from each time

point were used for RNA extraction. BIRC5, baculoviral IAP repeat containing 5; MKI67, marker of proliferation Ki-67; TOP2A, DNA topoisomerase II alpha.
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following in vitro culture and treatments is of good quality and re-

mains stable over the duration of the experiment based on

Gapdh expression (Figure S1C). In total, we collected eight

new cases of MSS CRLM (Figure S2A), and treated the tumor sli-

ces with FI, FX, or DMSO for 72 h at the same concentrations

noted above. In vitro assessment of tumor slices using the

MTS assay indicates concordance with clinical response in

four of five informative cases (Figure S2B). In parallel experi-

ments, three slices from each treatment group were dissociated

and pooled for scRNA-seq using the 10X Genomics Chromium

droplet-based platform. This yielded a total of 7,580 single-cell

transcriptomes inclusive of all treatment groups for the 8 cases.

Data were dimensionally reduced using principal-component

analysis (PCA) and visualized by projections of the 3D t-distrib-

uted stochastic neighbor embedding (t-SNE) method.18 Fig-

ure 2A shows that cells fromCRLMorganized into seven clusters

based on known gene expression patterns of different cell types;

the clusters were manually annotated in the manner of Tirosh

et al.19 Examples of markers representing each cell type are

shown in Figure 2B. In addition to cancer cells (clusters 2

and 5), we identified the presence of stromal cells/myofibro-

blasts (cluster 6), liver-like cells (cluster 4), macrophages (cluster

7), and lymphocytes (cluster 3), all of which are known to coexist

in CRLM based on histologic analyses. The most underrepre-

sented category is that of tumor endothelial cells (e.g., TEM7+

cells), which were identified in only a handful of cells within clus-

ters 3 and 6. Despite the use of the dead cell depletion kit, many

cells were found to express >25% mitochondrial reads and had

<100 detectable genes; such cells were non-informative and

labeled ‘‘compromised’’ (i.e., cluster 1); they were excluded

from further analysis.

Each tumor is represented by a different mixture and propor-

tion of the various cell types (Figure S3A). With respect to the tu-

mor cell clusters, they were unevenly distributed in individual

CRLM as well. Cluster 5 predominantly came from case 5, but

all 8 cases contain cells in the cluster (Figure S3B). Cases 1,

2, 3, and 7 were the main contributors to cluster 2, but other

cases were included as well (Figure S3C). These findings indi-

cate that most tumors were represented by a predominant tumor

cell type, which is consistent with the classification of CRC

based on bulk transcriptome analyses.8 Cluster 2was character-

ized by the expression of intestinal epithelial markers including

cytokeratin 20 (CK20), caudal type homeobox (CDX2), mucin

(MUC13), and intestinal cadherin (CAD17); this is analogous to

the enterocyte-like CRC subtype described by Sadanandam

et al.8 A smaller subset of cancer cells, cluster 5, has a distinct

gene expression pattern that is enriched with a stemness

signature20,21 while co-expressing the epithelial cell adhesion

molecule (EpCAM). We interpret cluster 5 as harboring stem-

like features similar to cells in the crypt base of colonic epithe-

lium, as highlighted by Sadanandam et al.8 Both sets of tumor

cells are distinct from those in cluster 4, which express albumin,

CK7, and C-reactive protein (CRP), consistent with hepatocytes

and cholangiocytes trapped within CRLM as tumor cells invade

the surrounding liver parenchyma. The top genes that differen-

tiate various cell types are shown in Figure 2C, and the cell sur-

face markers highlighting each cluster are shown in Figure 2D.

Among the genes that distinguish cluster 5 from cluster 2 is

RSPO2 (R-spondin 2), which is known to positively regulate the

Wnt/b-catenin signaling in maintaining stemness,22 and whose

gain-of-function mutation is associated with colon cancer.23

Within each cluster, we can further subdivide cells according

to gene set enrichment analysis (GSEA). For example, tumor-

derived lymphocytes (cluster 3) fell into three categories: T helper

(CD4+), cytotoxic T (CD8+), and regulatory T (Treg) cells, based

on their known phenotypic markers (Figure S3D). With respect

to the tumor cells, we found 2 subsets within cluster 5 that

differed significantly in their expression of cell proliferation

markers (Figure 2E). Cluster 5.1 contains a greater cell number

compared with cluster 5.2, and has a higher proportion of cells

expressing markers representative of G2/M phase (Figure 2F).

Moreover, RNA velocity highlights a trajectory moving from clus-

ter 5.2 toward cluster 5.1 cells as they becomemore proliferative

(Figure 2G). Other pathways that characterize the tumor cell

clusters are shown in Figure S4A.

Response of CRLM Cell Compartments to
Chemotherapies
After assigning the cells into their respective groups, we analyzed

the effects of chemotherapy on individual clusters. Excluding the

non-informative ‘‘compromised’’ cluster 1, the total cell number

was similar between DMSO- and FX-treated slices, while those

treated with FI were less (Figure 3A). We tabulated the number

of cells represented in each cluster and compared their abun-

dance relative to total cell number for each treatment group (Table

S1). We found that none of the cell types identified showed a sig-

nificant decline in relative cell count, except for cancer cell cluster

5.1 (Figure 3A). Specifically, cluster 5.1 showed greater sensitivity

to FI than FX, while relative cell counts did not change in cluster

5.2. This is supported by Gene Ontology (GO) term analysis of

cell proliferation genes showing that only FI-treated cluster 5.1

had a significant effect (e.g., p < 0.001), while other clusters

were not significantly affected (Figure 3C). However, non-cancer

cell compartments, including resident liver cells (cluster 4, which

include cholangiocytes and hepatocytes), T lymphocytes (clus-

ter 3), and tumor-associated macrophages (TAMs; cluster 7),

Figure 2. Single-Cell RNA-Seq Analyses of Tumor Slices from 8 MSS CRLM

(A) K-means clustering identifies 7 categories of cells from a total of 7,580 cells derived from all 8 cases in all treatment groups. Three tumor slices were used for

single-cell dissociation in each treatment group for each of the 8 cases. The inferred cell type is shown in color on a t-SNE projection.

(B) Representative marker gene expressions are shown for cell clusters 2–7.

(C and D) Heatmaps showing cell types based on mRNA expression of selected genes (C) and cell surface markers (D).

(E) Stem-like cluster 5 is further divided into 2 subtypes, 5.1 and 5.2, with GSEA showing distinct differences in pathway utilization.

(F) Uniformmanifold approximation and projection for dimension reduction (UMAP) plot of clusters 5.1 and 5.2 highlighting cells in G1, G2/M, and S phases of the

cell cycle based on their transcript expression.

(G) RNA velocities overlaid on UMAP of cluster 5 showing the trajectories of clusters 5.2 (less proliferative) and 5.1 (higher proliferative) cells.
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increased in relative cell count following chemotherapy, while no

change was noted in stromal myofibroblasts (cluster 6) (Fig-

ure 3B). These observations indicate that chemotherapy prefer-

entially targets proliferating cancer cells.

To better understand the differences in response of the tumor

cells to FI and FX that make up cluster 5.1, we compared the

transcriptome of these cells following treatment. We found se-

lective activation of the IFN pathway in FI-treated samples, while

FX induced the opposite response compared to controls (Fig-

ure 3D). These same IFN-related genes failed to show treat-

ment-specific effects in cluster 2 cancer cells, suggesting that

the FI-associated IFN response was specific to the stem-like

subset of CRC (Figure 3D). Our observations suggest that

stem-like tumor cells were more sensitive to FI compared to en-

terocyte-like tumor cells, and that it was accompanied by an IFN

response, which led us to explore the effects of chemotherapy

on the immune microenvironment in MSS CRLM.

Association between CRC Subtypes and the Immune
Environment
To understand the putative immune response to FI, we focused

on the expression of T cell co-inhibitory genes in our CRLM sam-

ples. Figure 4A illustrates the distribution of cells expressing im-

mune checkpoint receptors and their ligands. Notably, we found

that the ligands for PD-1 and T cell immunoglobulin and mucin-

domain containing-3 (TIM-3) were predominantly expressed in

the cancer cells, but in a mutually exclusive manner. Specifically,

PD-L1 and PD-L2 were nearly exclusively expressed in cluster 5,

especially 5.1, while ligands for TIM-3, galectin 9,24 and carci-

noembryonic antigen cell adhesion molecule 1 (CEACAM1)25

were abundantly expressed in cluster 2. We found minimal over-

lap between PD-1 and TIM-3 ligand expression in the cancer

cells, while multiple ligands of the same immune checkpoint

were frequently encountered (Figure 4B). When considering 12

of the genes shown in Figure 4A, 7 of 8 CRLM expressed >1

co-inhibitory gene, with the exception of case 4, from which

we only extracted a total of 130 cells (Figure 4C). These data sug-

gest that most metastatic tumors express a host of inhibitory re-

ceptors and ligands that contribute to immune evasion, but PD-1

and TIM-3 appear to be represented most abundantly.

To confirm the contrasting expression profile of PD-1 and

TIM-3 ligands in CRLM, we performed immunohistochemistry

on an expanded set of tumors, including the 4 cases used in plat-

form development and validation (Figure 1B), 8 cases used for

scRNA-seq analyses (Figure S2A), and 11 additional cases of

MSS CRLM from our biorepository. We observed that 12

(52%) were Gal9+;PD-L1�, 6 (26%) were Gal9�;PD-L1+, 4

(17%) were Gal9�;PD-L1�, and 1 (4%) expressed both proteins.

Examples of the two most common patterns are shown in Fig-

ures 4D and S4B. We found that most tumors expressed either

PD-1 or TIM-3 ligands but not both, such that PD-L1+ cells

were seldom found in juxtaposition with Gal9+ cells. Further-

more, we noted that Gal9+ tumors were more differentiated

with gland-forming adenocarcinoma, while PD-L1+ cancers

were less well differentiated, often appearing as sheets of

pleomorphic tumor cells. This is consistent with our scRNA-

seq analysis, which identified the differentiated enterocyte-like

CRLM expressing galectin-9 and those with stem-like features

decorated with PD-L1. Although other cell types besides tumor

cells expressed these ligands, including a minority of CD45+

TAMs and CD3+ lymphocytes, our findings suggest a relation-

ship between tumor subtype and its immune phenotype.

Next, we examined the effects of chemotherapy on immune

checkpoint expression. Figure 5A shows that the proportion of

tumor cells expressing immune coinhibitory genes increased

with chemotherapy, with the exception of the PD-1 ligands in

FI-treated CRLM slices. The latter treated samples had reduced

fractions of tumor cells expressing PD-L1 and PD-L2. Further-

more, the relative expression of these ligands was also reduced

with FI exposure, while the relative galectin-9 and CEACAM1

levels increased following FI (Figure 5B). We confirmed this

observation in a case of PD-L1+;Gal9� CRC by immunohisto-

chemistry and found that tumor cell expression of PD-L1

decreased with respect to adjacent stroma following exposure

to FI, but not FX (Figure 5C). In the same tumor slices, we found

PD-1-expressing cells resembling lymphocytes in close prox-

imity of tumor cells (Figure 5C, right panel). We surmised that

the suppression of PD-L1 and PD-L2 in FI-treated tumors may

simulate resident T cells in the tumor microenvironment.

While total T cells counts were unchanged by treatment (Fig-

ure 3B), when we partitioned the T cell population into the helper

(Th/CD4), cytotoxic (CD8/Ttox), and regulatory (Treg) subsets

using a panel of 12 markers (Figure S5A), there was a shift in

the proportion of these cells toward Ttox, while those represent-

ing Treg decreased (Figure 5D). This results in a relative increase

in CD8+:Treg, and to a lesser extent CD4+:Treg ratios, which has

been observed following chemotherapy by others.26–28 Exam-

ples of activationmarkers accompanying FI treatment are shown

in Figure 5E. RNA velocity analysis also indicates a trajectory of

naive Th cells toward the Ttox phenotype with chemotherapy

(Figure S5B). In addition, we found evidence of granzyme

B-expressing cells resembling lymphocytes in FI-treated

samples (Figure 5F). Thus, it appears that FI exerts an anti-tumor

effect in the stem-like subtype of CRLM by inducing an IFN

Figure 3. Response of CRLM Cell Compartments to Chemotherapies

(A) Number of cells in individual clusters with respect to total cell count for each treatment group (control, FI, FX) is depicted for cluster 5 (left panels), and cluster 2

(right panels). Cluster 5 is further divided into 5.1 and 5.2, and the relative cell counts in each treatment group are shown in the histograms. p values represent

comparisons between indicated treatment groups based on relative cell count. *p < 0.004 compared to control.

(B) Effects of chemotherapy on relative cell count (mean ± SD) of cluster 6 (fibroblasts), cluster 4 (liver-like), cluster 3 (lymphocytes), and cluster 7 (macrophages).

Gene expressions of IL-10 and IL-6 in cluster 7 are also shown. *p < 0.05; **p < 0.001 compared to control.

(C) GO term analysis (cell proliferation) of clusters 6, 4, 5.1, and 2 following treatments. The y axis represents the p values (log10) when comparing FI or FX to

control treatment for the respective cell clusters. Note that only FI-treated cluster 5.1 showed a p < 0.01 compared with control.

(D) Pathway analyses of cluster 5.1 highlight contrasting differences in interferon (IFN) response genes following exposure to FI versus FX. The changes in the IFN

pathways to chemotherapies in cluster 2 are shown on the right. Histograms of representative markers (IFI6, ISG15) are shown below.
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A B

C D

Figure 4. Expression of Immune Markers in CRLM Cells

(A) Expression of immune co-inhibitory genes in different cell clusters highlighted in red.

(B) Venn diagrams illustrating the extent of co-expression of PD-1 ligands (PD-L1, PD-L2) and TIM-3 ligands (galectin-9, CEACAM1) in cancer cells from the 8

CRLM samples. Numbers indicate the cell number in each category; those in bold indicate co-expression.

(C) Frequencies of tumor cells expressing 0–7 T cell co-inhibitory genes in the 8 cases of CRLM examined. The number of genes (0–7) expressed in any 1 cancer

are indicated by the color code. The 12 T cell co-inhibitory genes examined include PD-L1, PD-L2, B7-H3, B7-H4, VISTA, B7-H7, galectin-9, TDO, CEACAM1,

CD47, CD200, and CD40.

(D) PD-L1 and galectin-9 expression by immunohistochemistry (IHC) analyses in 2 cases of CRLM: stem-like (top, case 5) and enterocyte-like (bottom, case 2).

Cancer and stromal cells are marked with ‘‘C’’ and ‘‘S,’’ respectively. Original magnification 2003. Scale bar, 100 mm. The percentage of + tumor cells per high-

power field are shown (means ± SDs) based on a minimum of 100 tumor cells.
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response and modulating the expression of immune checkpoint

genes to activate tumor immune cells.

Besides T cells, TAMs are recognized to play a major role in

shaping the immune landscape of CRC.29 We found a significant

increase in the relative cell count of TAMs after FI exposure, and

this was accompanied by an upregulation of immunosuppres-

sive interleukin-10 (IL-10) and pro-tumorigenic IL-6 expression,

both of which are expected to enhance tumor immune evasion

and growth (Figure 3B).30,31 Other treatment-related effects

were noted in TAMs (Figure S5C), but the absolute macrophage

numbers were too small in our sample to separate them into

discrete polarization states.

TIM-3 Blockade Enhanced Response to Chemotherapy
Based on the observation that FI can modulate the expression

of immune checkpoints according to tumor subtypes, we

deduce that chemotherapy may influence tumor susceptibility

to immune checkpoint inhibition. Unlike the PD-1 pathway

that is de-repressed following exposure to FI, the TIM-3 ligands

are accentuated or maintained with FI and FX, respectively (Fig-

ure 5B). This raises the possibility that TIM-3 may play a role in

restricting anti-tumor immunity in the galectin-9-expressing

enterocyte-like MSS CRLM, and that TIM-3 blockade may syn-

ergize with chemotherapy. Using our tumor slice platform, we

examined the in vitro response following combination chemo-

immunotherapy. Figure 6A illustrates a galectin 9-expressing

gland-forming CRLM treated with either FI or FX alone or in

combination with anti-PD-1 or anti-TIM-3 antibodies. After

72 h of treatment, FI alone inhibited tumor viability to a greater

extent than FX, while the immune checkpoint blocking anti-

bodies alone did not suppress tumor growth. When FI was

combined with anti-TIM-3, but not anti-PD-1 antibodies, how-

ever, a significant synergistic anti-tumor response was

observed. In another case of PD-L1�;Gal9+ CRLM, the tumor

showed greater sensitivity to FX than FI (Figure S6A), and

when combined with immune checkpoint blocking antibodies,

therapeutic synergy was noted between FX and anti-TIM-3

blocking antibodies. The FX/anti-TIM-3-treated tumor slices

showed enhanced cleaved caspase 3 expression, while Ki67

was markedly reduced (Figures S6B and S6C). The specificity

of the observed synergy is illustrated in a third case of a MSS

CRLM in which both PD-L1 and galectin 9 were undetected

(Figure 6B). While this tumor was intrinsically more sensitive

to FX, neither immune checkpoint blocking antibody was syner-

gistic in promoting tumor kill. These findings support our model

that chemotherapy in galectin-9-expressing, enterocyte-like

MSS CRLM enhances its vulnerability to TIM-3 checkpoint inhi-

bition to achieve greater anti-tumor response (Figure 6C, right

panel).

DISCUSSION

In this study, we aimed to define the response of the CRLM tu-

mor microenvironment to chemotherapies using single-cell

transcriptomic analyses. By combining an ex vivo organotypic

tumor slice culture platform with scRNA-seq, we were able to

demonstrate the behavior of specific cellular compartments to

current first-line drug regimens for CRLM. Besides the known

effects of cytotoxic chemotherapies on cancer cell prolifera-

tion, our findings highlight the influence of these drugs on

tumor immune microenvironment. Specifically, we detected

differences in the response to chemotherapy in two distinct

groups of CRLM tumor cells. Those harboring a stem-like

signature showed the preferential expression of PD-1 ligands,

which are downregulated by the combination of 5-FU and iri-

notecan, leading to an anti-tumor immune response (Fig-

ure 6C). However, CRLMs with an enterocyte phenotype

were associated with TIM-3 ligand expression and exhibited

a synergistic response to chemotherapy when combined

with TIM-3 blockade. These observations provide evidence

for chemomodulation of tumor immune checkpoints in human

CRLMs and offer insights into the rational design of chemo-im-

munotherapies for MSS CRC.

Our ability to monitor changes in gene expression following

pharmacologic manipulation at a single-cell level in human can-

cer was made possible by the combination of a modified

organotypic slice culture platform that makes use of fresh spec-

imens and an optimized protocol for tumor slice dissociation

and data analyses in our scRNA-seq workflow. Specifically,

we standardized the volume and dimensions of the tumor slices

to compare results across samples17 and optimized growth

conditions to support CRLM growth in vitro for up to 1 month.

We also took advantage of the massive increase in cell

throughput provided by droplet-based processing methods.

These computational tools greatly increased speed while

avoiding bias in separating and removing compromised or

dying cells in our analyses. Our techniques can be adopted to

investigate the response of any solid tumor to drugs or

cell-based therapies and to inform physicians of the relative

sensitivity in selecting the optimal treatment combinations.

Figure 5. Effects of Chemotherapy on Immune Checkpoints and Tumor Response

(A) Fraction of total tumor cells expressing the indicated immune markers is tabulated according to treatments.

(B) Relative expression for PD-L1, PD-L2, Gal-9, and CEACAM1 in cancer cells following drug treatment.

(C) Protein expression by IHC of PD-L1 (3 left panels) and PD-1 (right panel with enlargement) following exposure to chemotherapy (FI, FX) versus control was

semi-quantified as 0 (no expression), 1+ (weak), 2+ (moderate), and 3+ (strong). Expression levels of PD-L1 in tumor cells (C) relative to stroma (S) are as follows:

control group: 2+:0+; FI group: 0–1+:0+; FX group: 3+:0–1+. Original magnification 2003. Scale bar ,100 mm. Arrowheads denote the boundary of the cancer cell

cluster. Data represent case 5.

(D) Treatment with FI and FX is associatedwith an expansion in cytotoxic T cells. Left 3 panels represent single-cell histograms of the T cell markers used to group

the T cells into cytotoxic (Ttox), helper (Th), and regulatory (Treg) according to treatments. The corresponding CD8+:Treg and CD4+:Treg ratios are shown in the

right panels.

(E) Expression of activation markers following chemotherapy: FI, FX, compared to control, C.

(F) GranzymeB IHC after in vitro treatment of CRLMslices from case 5. Controls: DMSO andSTS, staurosporine. Original magnification: 1003. Scale bar, 100 mm.

Average percentages (means ± SDs) of + cells per high power field (hpf) are indicated, with a minimum of 10 hpf counted per treatment.
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Figure 6. Chemomodulation of Immune Susceptibility

(A and B) Response of (A) a PD-L1-;Gal9+ CRLM and (B) a PD-L1�;Gal9� CRLM to combination chemo-immunotherapies. Tumor slices (n = 3 per group) were

treated with indicated drugs for 72 h, and the percentage of change in MTS absorbance (mean ± SD) was tabulated. Baseline expression of PD-L1 and galectin-9

was determined by IHC (right panels, original magnification 2003, scale bar, 100 mm). STS, staurosporine (positive control).

(C) DMSO negative control; a-PD1 and a-TIM3 represent blocking antibodies targeting the respective immune checkpoints. *p < 0.5 and **p < 0.001 compared to

control, C. #p < 0.05. Clinical features of these 2 cases are shown in Figure S6D.

(C) Models of the effects of chemotherapy in the 2 types of CRLM. Left panel: CRLM with stem-like features expresses PD-1 ligands to evade immune sur-

veillance. FI induces an IFN response along with the suppression of PD-L1 to enhance anti-tumor immune response. Right panel: CRLM with enterocyte-like

phenotype expresses TIM-3 ligands, which is further augmented (by FI) or maintained (by FX) with chemotherapy to enforce immune evasion; this is reversible by

a-TIM3 blocking antibodies to enhance anti-tumor effects.
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The platform can be further expanded to monitor temporal

changes in gene expression to highlight the intricacies of treat-

ment-induced responses of individual cellular compartments

within the tumor microenvironment.

Previous studies have underscored the association between

the cellular phenotype of CRCs and their chemosensitivity.8

Specifically, the authors found that CRCs possessing stem-

like features were significantly more likely to respond to

FOLIRI, a phenomenon that was presumed to be intrinsic to

the tumor cells. In this study, we confirmed that irinotecan-

based treatment is more active against CRLM with stem-like

features, but the effects of this therapy go beyond its direct

cytotoxic effects on tumor cells. We found evidence that FI

induces an immune response in stem-like CRLM through the

combined effects of activating the IFN pathway and suppress-

ing the PD-1 ligands, leading to enhanced tumor T cell cyto-

toxicity. DNA-damaging agents, including chemotherapy and

radiation, have been shown to elicit an inflammatory response

via the formation of micronuclei following double-strand

breaks as cells progress through mitosis.14 The presence of

a local inflammatory response may be insufficient to induce

tumor regression given that the T cells are often in a state of

exhaustion, however. To overcome this deficit, Harding

et al.14 showed that radiated tumors benefit from the addition

of immune checkpoint inhibition to elicit a stimulator of IFN

genes (STING)-mediated abscopal effect. In the case of

stem-like CRLM, we found that FI has an additional effect of

suppressing PD-1 ligand expression in tumor cells, thus

re-invigorating resident effector T cells without the need for

exogenous immune checkpoint inhibition. The extent to which

FI reverses PD-1-mediated immunosuppression is unknown,

and whether stem-like CRLM would benefit additionally from

anti-PD-1inhibitors remains to be investigated.

The ability of chemotherapy to modulate the PD-1/PD-L1

pathway has been previously reported, with variable effects.

Tracking the proportion of circulating mononuclear cells

expressing PD-1, Formica et al.32 found that an increase in

PD-1+ cells following FOLFIRI was associated with improved

progression-free survival, which may be indicative of chemo-

therapy-induced anti-tumor immune response. Examining

cancer cells with stem-like features, Hsu et al.15 reported

that PD-L1 accumulates in these cells as a result of EMT-

mediated signaling to promote N-glycosylation of PD-L1 via

the b-catenin/STT3 pathway. Others have also noted

enhanced PD-L1 expression in tumors with stem-like fea-

tures.33,34 Notably, drugs such as topoisomerase inhibitors

can downregulate PD-L1, which is consistent with our obser-

vations, and provides further evidence of the preferential

response of stem-like CRLM to 5-FU/irinotecan, as reported

by Sadanandam et al.8

Among the immune co-inhibitory proteins expressed by can-

cer cells in our study, the ligands of PD-1 and TIM-3 were

most commonly and robustly expressed (Figure 4A). Interest-

ingly, the expression of these ligands was found to be nearly

mutually exclusive and correlate with tumor subtypes. While

our sample size is limited, PD-L1 and galectin-9 expression

were mutually exclusive in all but 5 of the 23 cases, and only 1

showed an admixture of PD-L1+ and Gal9+ cells in the same tu-

mor. Stem-like CRLM expressed PD-1 ligands, while entero-

cyte-like CRLM were associated with galectin-9 expression.

The functional relationship between TIM-3 ligands and CRC

phenotype has not been investigated, although a study found

significantly lower TIM-3 expression in poorly differentiated tu-

mors.35 Larger studies are needed to confirm the putative

connection between the state of tumor differentiation, its molec-

ular subtype, and corresponding immune checkpoint expres-

sion.We predict that other CRC subtypes that were not identified

in our study are likely to be associated with different immune pro-

files. In fact, 4 of the 23 CRLMs examined did not express either

PD-L1 or galectin-9; other inhibitory molecules have yet to be

examined.

The notion that chemotherapy can modulate immune check-

points in predictable patterns opens up the possibility of

combining chemotherapy with immune checkpoint inhibitors in

a more precise, rational way. In gland-forming, galectin-9-ex-

pressing CRLM, we showed that blockade of TIM-3may achieve

greater tumor kill when added to chemotherapy. However, anti-

TIM-3 blockade was not beneficial in those that do not express

galectin-9. In summary, our single-cell analyses of the response

to chemotherapy in human MSS CRLM provide a framework for

a functional connection between tumor subtypes and their im-

munemicroenvironment, themodulation of immune checkpoints

by chemotherapy, and the therapeutic synergy between chemo-

therapy and immune checkpoint inhibitors for specific tumor

subtypes. The ability to directly interrogate intact human tumors

in vitro will aid in the translation of these concepts to exploit

the potential for chemomodulation of tumor susceptibility to

immunotherapy.

Limitations of Study
Among the limitations of the study, our in-depth single-cell

analysis was conducted on only 8 cases of CRLM, which

would not be expected to represent the spectrum of CRC.8

Instead, our analyses of the two subtypes will serve as a foun-

dation for future investigation of other subtypes of CRC. We

also recognize that the majority of the tumor specimens in

our study were exposed to chemotherapy before their resec-

tions. While experiments using chemo-naive tumors are ideal,

the current clinical approach for stage IV CRC strongly encour-

ages upfront administration of systemic chemotherapy.36

Consequently, the samples were subjected to the variable ef-

fects of preoperative chemotherapy, which affect the survival

of tumor slices in vitro. We found that MTS absorbance

following placebo treatment dropped significantly in slices

from tumors that responded to preoperative chemotherapy

compared with those that progressed or were untreated (Fig-

ures 1 and S2). Furthermore, the impact of preoperative

chemotherapy on individual cellular compartments of the tu-

mors is unaccounted for, but likely reflects the variable contri-

bution of different cell types across the cases (Figure S3A).

Finally, the issue of intra-tumoral heterogeneity was not fully

addressed in this study. Regional representation of cellular

composition within a large tumor varies, as we have demon-

strated previously,17 but the extent to which immune check-

points are differentially modulated by chemotherapy within a

tumor is not yet known.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Colorectal tumor slice Case A University of Washington Hospital 44-908084 (de-identified code)

Colorectal tumor slice Case B University of Washington Hospital 50-897884-2 (de-identified code)

Colorectal tumor slice Case C University of Washington Hospital 65-877684-2 (de-identified code)

Colorectal tumor slice Case D University of Washington Hospital 64-877684 (de-identified code)

Colorectal tumor slice Case 1 University of Washington Hospital 10-967583 (de-identified code)

Colorectal tumor slice Case 2 University of Washington Hospital 14-957162 (de-identified code)

Colorectal tumor slice Case 3 University of Washington Hospital 20-957123 (de-identified code)

Colorectal tumor slice Case 4 University of Washington Hospital 31-957056 (de-identified code)

Colorectal tumor slice Case 5 University of Washington Hospital 36-957030 (de-identified code)

Colorectal tumor slice Case 6 University of Washington Hospital 51-956955 (de-identified code)

Colorectal tumor slice Case 7 University of Washington Hospital 53-888383-2 (de-identified code)

Colorectal tumor slice Case 8 University of Washington Hospital 56-886983 (de-identified code)

Chemicals, Peptides, and Recombinant Proteins

Belzer UW solution Bridge to Life Ltd. NA

HEPES GIBCO #15630080

Sodium bicarbonate GIBCO #25080-094

Sodium pyruvate GIBCO #11360070

Glutamine GIBCO #25030081

Penicillin-Streptomycin GIBCO #15140-122

Nicotinamide Sigma-Aldrich #N-0636

Ascorbic acid 2-phosphate Sigma-Aldrich #A8960-5G

Glucose Sigma-Aldrich #G5767

hEGF Fisher Scientific #354052

Corning ITS + premix supplement Fisher Scientific #354352

RPMI GIBCO #21875-034

PBS GIBCO #20012027

BSA Bioworld #220700222

DMSO Serva #D2650

Invitrogen RNAlater Fisher Scientific #AM7020

Fluorouracil Selleck #S1209

Oxaliplatin Selleck #S1224

Irinotecan Selleck #S2217

CD279 (PD-1) antibody BD Biosciences #562138; RRID:AB_10897007

CD366 (Tim-3) antibody Biolegend #345004; RRID:AB_1877090

Critical Commercial Assays

MACS Tumor Dissociation Kit Miltenyi Biotec #130-095-929

Dead cell removal kit Miltenyi Biotec #130-090-101

Single-Cell 30 Library and Gel Bead kits v.2 10xGenomics #120237

RNA 6000 Nano LabChip Agilent #5067-1511

High Sensitivity DNA LabChip Agilent #5067-4626

SPRI Select beads Beckman Coulter #B23317

KAPA Library Quantification kit KAPA Biosystems #KK4824

NextSeq High Output kit (150 Cycles) Illumina #20024907
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by Raymond Yeung (ryeung@uw.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All gene expression data is available online from the Dryad research data repository (https://doi.org/10.5061/dryad.pvmcvdngt).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All patients undergoing surgical resection for metastatic colorectal cancer at the University of Washington Medical Center were

consented under IRB approved protocols (#00001852, #00001666: Liver Tumor Biorepository) for tissue donation and access to

de-identified demographic and clinical data. This is not a clinical trial, and patients were not allocated to experimental groups, but

rather their de-identified specimens were collected for in vitro analyses. Clinical features of cases used in this study are shown in

Figures 1B, S2A, and S6D. To classify patient’s response to tumor, the RECIST criteria (version 1.1) was used.44 Analysis of influence

of gender identity upon experiments was not performed, and sample size estimation was not indicated.

METHOD DETAILS

Tumor slicing and viability
Detailed protocol for human tumor slice culture is outlined in Kenerson et al.17 Briefly, following surgical resection of CRLM speci-

mens greater than 2 cm in diameter, sterile 6 mm tumor tissue cores were punch biopsied (Integra Miltex, York, PA) and immediately

placed in BELZER-UW solution (Bridge to Life Ltd., Columbia, SC, USA)on ice. Within hours, cores were cut into 250 mm thick slices

by vibratome (Leica Biosystems Nussloch GmbH, Germany) and placed with media onto Millicell Cell Culture Inserts (0.4 mm PTFE,

EMD Millipore, Burlington, MA) in a 24-well cell culture plate.

Tumor slice viability was assayed by MTS (CellTiter 96�AQueous One Solution Cell Proliferation Assay, Promega, Fitchburg, WI)

following the manufacturer’s instructions. The slices were maintained in multi-well plates with hydrophilic PTFE cell culture inserts

(EMDMillipore) under standard humidified, temperature-controlled culture conditions on a lab rocker for the remainder of the culture

period. Culture medium was prepared fresh for each slice batch and consisted of William’s E medium supplemented with 20 mM

HEPES (GIBCO), 17 mM sodium bicarbonate (GIBCO), 110 mg/L sodium pyruvate (GIBCO), 2 mM glutamine (GIBCO), 0.4% Peni-

cillin-Streptomycin (GIBCO), 12 mM nicotinamide (Sigma-Aldrich), 0.2 mM ascorbic acid-2-phosphate(Sigma-Aldrich), 14 mM

glucose (Sigma-Aldrich), 20 ng/mL EGF and 1% ITS+Premix (Corning). Culture medium was changed every 24-48 hours.

Tumor slice dissociation
Tumor slices were dissociated using the MACS Tumor Dissociation Kit (MiltenyiBiotec, Auburn, CA) according to the manufacturer’s

‘‘dissociation of soft tumors’’ protocol. Enzymes sufficient for three tumors were reconstituted the lyophilized A, R and H powders

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Tophat 2.1.1 Langmead and Salzbert37 https://github.com/infphilo/tophat

DESeq2 1.20.0 Love et al.38 https://github.com/mikelove/DESeq2

GSEA 4.1.0 Subramanian et al.39 https://www.gsea-msigdb.org/gsea/index.jsp

Cellranger 2.0.0 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

installation

Cellranger R kit 2.0.0 10x Genomics https://cf.10xgenomics.com/supp/cell-exp/

rkit-install-2.0.0.R

Scanpy 1.5.1 Wolf et al.40 https://github.com/theislab/scanpy

Scikit-Learn 0.23.0 Pedregosa et al.41 https://scikit-learn.org/stable

Velocyto 0.17.17 La Manno et al.42 https://github.com/velocyto-team/velocyto.py

GSEApy Chen et al.43 https://github.com/zqfang/GSEApy
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and stored in aliquots at �20�C. Prior to dissociation, an enzyme mix was prepared by adding fresh aliquots of enzymes A, R and H

with the recommended volumes to RPMI 1640 medium in a sterile ‘‘gentleMACS C’’ tube.

To account for positional variation and heterogeneity, each sample consists of three non-adjacent slices selected from the top,

middle, and bottom of the tumor core and cultured in separate wells. The three slices were transferred to a single C tube containing

the enzyme mix.

For Cases 1-5 in Figure 1, the ‘‘m_spleen_01’’ program was run on the Dissociator instrument for the first mechanical dissociation

step and followed by the addition of the enzyme mix. For the remaining cases (Figure S2), first mechanical dissociation step was

performed by running the ‘‘h_tumor_01 program.’’ Slices were then incubated at 37�C for 20-30 minutes under continuous rotation

using the MACSmix Tube Rotator. A second mechanical dissociation step, ‘‘h_tumor_02 program’’ followed the incubation. Slices

were then visually evaluated and tubes were incubated for an additional 20 minutes at 37◦ C if undissociated tissue was visible. Slice

tissue was further dissociated by running the ‘‘h_tumor_03’’ program. After a short spin, the cell suspension was passed through a

70 mmMACS SmartStrainer. The strainer was washed with a solution of 0.04% (w/v) molecular biology grade BSA (Gemini Bio Prod-

ucts) in PBS. Finally, the cell suspension was strained through a 30 mm MACS SmartStrainer. Cells were spun down at 300Xg and

supernatant was removed.

Removal of dead cells from single cell suspension
The dead cells were removed from single cell suspensions with the Dead Cell Removal kit (MiltenyiBiotec) and according to the Dead

Cell Removal Rev B protocol (10X Genomics, Pleasanton, CA). Cells were resuspended in Dead Cell Removal MicroBeads and

incubated for 15 minutes at room temperature. Meanwhile, an MS column (MiltenyiBiotec) was rinsed with binding buffer. The cell

suspension was diluted and applied to the MS column on a MiniMACS separator. The effluent containing the live single cells in bind-

ing buffer was collected into sterile tubes. The binding buffer was replaced with PBS containing 0.04%BSA through two-wash steps.

Wide-bore pipette tips (Rainin, Columbus, OH) were used to ensure minimum damage to single cells.

Single cell suspension preparation for 10X Genomics Single Cell experiment
An aliquot of cell suspension from the three dissociated slices belonging to one experimental condition was mixed with Trypan Blue,

quantified with a Countess Automated Cell Counter (Life Technologies, Waltham, MA), and confirmed by eye with a hemocytometer.

A stock concentration of approximately 106 cells/ml was prepared in PBS with 0.04% molecular biology grade BSA and counted

again to get the final cell concentration. Based on the cell concentration and the targeted cell recovery, the corresponding volume

of cell suspensionwasmixedwith nuclease freewater and loaded on the ChromiumController according to the ChromiumSingle Cell

30 Reagent Kits v2 protocol (10X Genomics). On average, 17,400 cells in 33.8 ml were loaded into each Chromium droplet generation

microfluidic device to target the maximum cell recovery number of 10,000. Again, wide-bore pipette tips were used to minimize the

damage to single cells.

Drug treatment of tumor slice cultures for bulk RNA sequencing
Bulk RNaseqwas performed for cases A-D of Figure 1 to optimize conditions and duration of treatments. Fresh tumor slices (at least 3

per group) were treated with drugs as described below for 24, 48, 72 and 96 hours (4 time-points). Following treatment, slices were

transferred to RNAlater stabilization solution (Thermofisher), and stored at �80�C for downstream experiments. As control for each

experiment, one slice was placed in RNAlater without DMSO, and another was maintained in medium with 0.2%DMSO (equal to the

DMSO concentration in treatment groups) and was transferred to RNAlater solution at the same time as the treated slices.

Drug treatment of tumor slice cultures prior to single cell RNA sequencing
Stock solutions of irinotecan (Selleck Chemicals), oxaliplatin (Selleck Chemicals) and 5-fluorouracil (Selleck Chemicals) were pre-

pared in DMSO (Sigma-Aldrich) and stored in aliquots. Prior to drug treatment, working solutions were prepared fresh by diluting

the stock solutions with medium to a final concentration of 1 mg/ml 5-fluorouracil, 1 mg/ml oxaliplatin and 2 mg/ml irinotecan. Tumor

slices were treated with 1 mg/ml 5-fluorouracil in combination with 1 mg/ml oxaliplatin in the FX group or 1 mg/ml 5-fluorouracil in com-

bination with 2 mg/ml irinotecan in the FI group. Control group consisted of slices treated with 0.2% DMSO in medium. Multi-well

plates containing slices were set on the PS-3D fixed tilt 3D platform rotator (Grant Instruments) for a smooth motion and incubated

at 37�C for 72 hours. Every treatment group or control consisted of at least three slices treated similarly in different wells. Consecutive

slices were shown to be ‘identical’ biologic replicates,17 and they were evenly distributed across treatment groups to maintain equal

tumor representation for each group to account for intra-tumor heterogeneity. Media were replaced every 24 hours with freshly pre-

pared treatment or control media in relevant groups.

Combination chemo-immunotherapy
Slices were procured and processed for plating as described above. Slices were allowed to assimilate to the in vitro conditions over-

night. Pre-treatment tumor slice viability was evaluated the following day by transferring each slice from cell inserts and placing in

individual wells in a 48 well dish with 400ml of media and 80ml of MTS reagent and incubated at 37�C with rocking. After 3 hours,

200ml of media was transferred to a 96 well plate and absorbance was read at 490nm blanks were averaged and subtracted from

the slice absorbance. Slices were placed back in the original insert with fresh media and incubated overnight before drug treatment.
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Slices were treatedwith the reagents as listed in Table below, with n of 4 slices in each treatment group. Sliceswere treated twicewith

drug in a 5-day period and then were subject to a post-treatment MTS as described. After viability assessment slices were fixed for

histology. Percent change in viability for each slice was calculated and averaged for each treatment group. HU CD279 (PD-1) NALE

MABand IgG1K antibodies were purchased from BD Biosciences (San Jose, CA) and LEAF(TM) Purified anti-human CD366 (Tim-3)

was purchased from Biolegend Inc. (San Diego, CA).

Treatment scheme:

RNA extraction from tumor slices
Tumor slices were disrupted with a TissueRuptor (QIAGEN) using TissueRuptor Disposable Probes for 15-20 s at maximum speed.

RNA was then extracted from slices using AllPrep DNA/RNAMicro Kit (QIAGEN) and according the manufacturer’s protocol. Quality

and quantity of RNA was assessed with Agilent RNA 6000 Pico or Nano kits (Agilent Technologies, Inc.) and NanoDrop ND-1000

spectrophotometer.

10X Droplet Sequencing
Cellular suspensions were loaded on a Chromium instrument (10X Genomics, San Francisco, CA) to generate single-cell Gelbead-In-

EMulsion (GEM) droplets. Reverse transcription was performed in a C1000 Touch thermocycler (Biorad, Hercules, CA). After RT,

GEMs were harvested and the cDNAs were amplified and cleaned with SPRIselect Reagent Kit (Beckman Coulter, Brea, CA).

Indexed sequencing libraries were constructed using the Chromium Single-Cell 30 Library Kit (version 2) for enzymatic fragmentation,

end-repair, A-tailing, adaptor ligation, ligation cleanup, sample index PCR, and PCR cleanup. The barcoded sequencing libraries

were quantified by quantitative PCR using the KAPA Library Quantification Kit (KAPA Biosystems, Wilmington, MA). Sequencing

libraries were loaded on a NextSeq500 (Illumina, San Diego, CA) and run 150 cycles (26 bp for Read 1 and 124 bp for Read 2). Three

indexed (multiplexed) libraries (e.g., Control, FX, FI) were loaded on to one flowcell to obtain a sequencing depth of approximately

100,000 reads per cell.

Reads were aligned to the human genome (GRCh38) and quantified using the Cell Ranger (version 2.0, (https://support.

10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/installation). Gene expression tables from the eight cases

were aggregated into a single table using Cell Ranger R kit (version 2.0, https://cf.10xgenomics.com/supp/cell-exp/rkit-install-2.0.0.

R). Poor-quality cells/GEMs, defined as those expressing a high proportion (> 10%) mitochondrial genes or a low number of total

genes (< 400) were labeled as ‘‘compromised’’ and excluded from all analysis except for cell type classification and clustering.

Unique transcripts were identified by 10X unique molecular indexes (UMIs). We observed median averages of 7471 unique tran-

scripts and 1834 genes per cell. The median cell mitochondrial read fraction was 4.9%. Histograms for these values appear in Fig-

ure S1. UMI counts were normalized by adjusting each cell to 10,000 UMIs per cell using the normalize_per_cell function in ScanPy

(version 1.6, https://github.com/theislab/scanpy).

Cell type classification and clustering
All cells from the eight cases, including the compromised cells, were visualized using two-dimensional UniformManifold Approxima-

tion and Projection (UMAP) and three-dimensional t-distributed Stochastic Neighbor Embedding (t-SNE). Principal Component

Analysis was performed using the 7500 most variable genes. The UMAP and t-SNE visualizations were calculated using the first

30 principal components.

Cell types were assigned using clustering and a panel of cell-type marker genes. K-Means clustering, which uses an expectation

maximization algorithm, was used to assign cells into eight clusters. Six clusters were assigned putative cell type identities using

marker gene panels of eight genes. These panels were specified as Enterocyte-like (CDH17, PCK1, PLCB4, MUC13, CLDN3,

GDF15, EPCAM, CEACAM50), Stem-like (MT2A, MT1A, MT1E, RSPO2 CST6, GPX1, IFI27, CCDC85B), Liver-like (APCS, FGG,

Condition Treat with 450 uL media containing:

Control (DMOS & IgG1) 0.2% DMSO and 20 mg/ml IgG1

FX 1 mg/ml 5FU + 1 mg/ml oxaliplatin + 20 mg/ml IgG1

FI 1 mg/ml 5FU + 2 mg/ml irinotecan + 20 mg/ml IgG1

PD-1 20 mg/ml CPD-1 + 0.2% DMSO

TIM-3 20 mg/ml CTIM-3 + 0.2% DMSO

FX and PD-1 1 mg/ml 5FU + 1 mg/ml oxaliplatin + 20 mg/ml CPD-1

FX and TIM-3 1 mg/ml 5FU + 1 mg/ml oxaliplatin + 20 mg/ml CTIM-3

FI and PD-1 1 mg/ml 5FU + 2 mg/ml irinotecan + 20 mg/ml CPD-1

FI and TIM-3 1 mg/ml 5FU + 2 mg/ml irinotecan + 20 mg/ml CTIM-3

STS 10 mM STS and 20 mg/ml IgG1
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DUOXA2, IGFBP1, SERPINA1, ALB, DEFB1, KRT7), Fibroblast (COL1A2, LUM, LOXL1, COL3A1, VEGFA, PDGFA, BGN, SPARC),

Lymphocyte (TRBC1, CD3G, GIMAP7, GPR171,CD3D, TRAC, CXCR4, CD52), and Macrophage (FCER1G, MS4A7, C1QA, SPI1,

TYROBP, LYZ, CD74, APOE). The cluster containing a majority with highly-mitochondrial gene expression (> 10% mitochondrially

encoded) and the cluster containing a majority with few expressed genes (< 400 genes per cell) were both labeled as ‘‘compro-

mised.’’ Additionally, the Stem-like cluster was divided into two subclusters using KMeans. Scikit-Learn provided the KMeans

function for clustering, while Scanpy provided the score_genes function for calculating the marker gene expression scores and

the marker_gene_overlap function for matching clusters to marker gene panels. As the KMeans and score_genes functions are

not deterministic, the process was repeated ten times. Cells were assigned types based on the consensus, and cluster size means

and variances were calculated. The fraction representation of each cell type in each tumor was calculated as a percentage. Cluster

size standard deviationswere small, ranging from 0.05% for the large Enterocyte-like cluster to 0.86% for the small Fibroblast cluster.

(See Table S1)

QUANTIFICATION AND STATISTICAL ANALYSIS

Cluster sizes and Gene expression
Cell types cluster sizes were deemed to have changed if two conditions were satisfied. First, we used a t test to eliminate cell clus-

tering errors. Second, if the t test p value was below 0.001, we performed Fisher’s exact tests on the cell numbers. Gene expression

changes were evaluated using the Wilcoxon Rank-Sum test with the Benjamini-Hochberg correction for multiple testing.

Gene set enrichment
Gene Set Enrichment Analysis (GSEA) was performed using GSEA v4.1.0 software with the default settings.39 P values were used as

the metric for ranking gene sets. The curated Molecular Signatures Database (MSigDB) H (hallmark), C2 (curated gene sets), C5

(Gene Ontology) and C7 (immunological signature) databases were utilized. Term enrichment analysis was also performed using

the Enrichr43 module in GSEAPY. Gene lists included those significantly upregulated at the p < 0.05 level by the Wilcoxon rank

sum test. The 2018 GO Molecular Function database was utilized. For plotting, we ranked the gene set terms by the Enrichr ‘‘com-

bined score,’’ which is a product of the significance estimate and the magnitude of enrichment (z$logp, where p is the Fisher’s exact

test p value and z is the z-score deviation from the expected rank). Plots also show the p value and the number of upregulated genes

in the gene set.

RNA velocity
Spliced and unspliced transcript counts were calculated from the Cellranger BAM alignment files using Veloctyo. The resulting

Velocyto Loom files were loaded into ScanPy for subsequent processing. RNA velocities were calculated from the splice data, while

Principal Components (PCs) were calculated as previously described. For visualization with UMAP embedding, we used the top 30

PCs and calculated cell kNN pooling using the 30 nearest neighbors. Patient batch correction on the nearest neighbors was

performed using BBKNN. Otherwise, RNA velocity, BBKNN and UMAP were performed using the ScanPy default parameters.
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