Publication Title
Mol Syst Biol
Document Type
Article
Publication Date
3-4-2019
Keywords
Mycobacterium tuberculosis; Path‐seq; gene regulatory networks; host–pathogen interactions; systems biology
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Specialty
Institute for Systems Biology
Recommended Citation
Peterson, Eliza Jr; Bailo, Rebeca; Rothchild, Alissa C; Arrieta-Ortiz, Mario L; Kaur, Amardeep; Pan, Min; Mai, Dat; Abidi, Abrar A; Cooper, Charlotte; Aderem, Alan; Bhatt, Apoorva; and Baliga, Nitin S, "Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation." (2019). Articles, Abstracts, and Reports. 1300.
https://digitalcommons.providence.org/publications/1300