Publication Title

Epigenet Insights

Document Type

Article

Publication Date

1-1-2019

Keywords

DNA methylation; brain metastasis; epigenetics; precision medicine; supervised machine learning

Abstract

DNA methylation profiling has proven to be a powerful analytical tool, which can accurately identify the tissue of origin of a wide range of benign and malignant neoplasms. Using microarray-based profiling and supervised machine learning algorithms, we and other groups have recently unraveled DNA methylation signatures capable of aiding the histomolecular diagnosis of different tumor types. We have explored the methylomes of metastatic brain tumors from patients with lung cancer, breast cancer, and cutaneous melanoma and primary brain neoplasms to build epigenetic classifiers. Our brain metastasis methylation (BrainMETH) classifier has the ability to determine the type of brain tumor, the origin of the metastases, and the clinical-therapeutic subtype for patients with breast cancer brain metastases. To facilitate the translation of these epigenetic classifiers into clinical practice, we selected and validated the most informative genomic regions utilizing quantitative methylation-specific polymerase chain reaction (qMSP). We believe that the refinement, expansion, integration, and clinical validation of BrainMETH and other recently developed epigenetic classifiers will significantly contribute to the development of more comprehensive and accurate systems for the personalized management of patients with brain metastases.

Clinical Institute

Cancer

Clinical Institute

Neurosciences (Brain & Spine)

Specialty

Oncology

Specialty

Neurosciences

Share

COinS