Circulating MicroRNAs and Extracellular Vesicle-Containing MicroRNAs as Response Biomarkers of Anti-programmed Cell Death Protein 1 or Programmed Death-Ligand 1 Therapy in NSCLC.

Document Type


Publication Date


Publication Title

J Thorac Oncol


Anti–PD-1; Anti–PD-L1; Extracellular vesicle; Lung cancer; MicroRNA


INTRODUCTION: Anti-programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) antibody therapy is a standard treatment for advanced NSCLC, and PD-L1 immunohistochemistry is used as a predictive biomarker for therapeutic response. However, because not all patients with NSCLC with high PD-L1 respond, and some patients with low PD-L1 expression exhibit durable benefit, more accurate predictive biomarkers are needed. Circulating microRNA (miRNA) and miRNA packaged in extracellular vesicles (EVs) are believed to play a role in intercellular communication among immune cells and between immune cells and tumor cells and may represent a good source of mechanism-related biomarkers.

METHODS: Pretreatment plasma of patients with advanced NSCLC treated with single-agent anti-PD-1 or anti-PD-L1 antibody was used in this study. Plasma EVs were isolated using size-exclusion chromatography. Whole plasma and EV-containing RNAs were extracted. The miRNA profile was analyzed with a next-generation sequencing platform.

RESULTS: Samples from 14 responders (patients who exhibited partial response or stable disease ≥6 mo) and 15 nonresponders (patients who exhibited progressive disease as per Response Evaluation Criteria in Solid Tumors) were analyzed. In total, 32 miRNAs (p = 0.0030-0.0495) from whole plasma and seven EV-associated miRNAs (p = 0.041-0.0457) exhibited significant concentration differences between responders and nonresponders. The results of some of these circulating miRNAs were validated in a separate cohort with eight responders and 13 nonresponders. The tumor PD-L1 level was also assessed using immunohistochemistry for patients involved in both cohorts.

CONCLUSIONS: Specific circulating miRNAs in whole plasma and plasma EVs are differentially expressed between responders and nonresponders and have potential as predictive biomarkers for anti-PD-1/PD-L1 treatment response.

Clinical Institute



Institute for Systems Biology




Pulmonary Medicine