Safety and Efficacy of GFB-887, a TRPC5 Channel Inhibitor, in Patients With Focal Segmental Glomerulosclerosis, Treatment-Resistant Minimal Change Disease, or Diabetic Nephropathy: TRACTION-2 Trial Design.

Document Type


Publication Date


Publication Title

Kidney Int Rep


washington; spokane


Introduction: A critical unmet need exists for precision therapies for chronic kidney disease. GFB-887 is a podocyte-targeting, small molecule inhibitor of transient receptor potential canonical-5 (TRPC5) designed specifically to treat patients with glomerular kidney diseases characterized by an overactivation of the TRPC5-Rac1 pathway. In a first-in-human study, GFB-887 was found to be safe and well tolerated, had a pharmacokinetic (PK) profile allowing once-daily dosing, and dose dependently decreased urinary Rac1 in healthy adults.

Methods: TRACTION-2 is a phase 2a, double-blind, placebo-controlled, multiple-ascending dose study of GFB-887 in patients with focal segmental glomerulosclerosis (FSGS), treatment-resistant minimal change disease (TR-MCD), or diabetic nephropathy (DN) (NCT04387448). Adult patients on stable renin-angiotensin system blockade and/or immunosuppression with persistent proteinuria will be randomized and dosed in 3 ascending dose levels to GFB-887 or placebo for 12 weeks. Cohorts may be expanded or biomarker-enriched depending upon results of an adaptive interim analysis.

Results: The primary objective is to evaluate the effect of increasing doses of GFB-887 on proteinuria. Safety and tolerability, quality of life, pharmacokinetic/pharmacodynamic profiles, and the potential association of urinary Rac1 with efficacy will also be evaluated. The projected sample size has 80% power to detect a treatment difference in proteinuria of 54% (FSGS/TR-MCD) or 44% (DN) compared to placebo.

Conclusion: TRACTION-2 will explore whether targeted blockade of the TRPC5-Rac1 pathway with GFB-887 is an efficacious and safe treatment strategy for patients with FSGS, TR-MCD, and DN and the potential value of urinary Rac1 as a predictive biomarker of treatment response.

Clinical Institute

Kidney & Diabetes