Implications of Selection Bias Due to Delayed Study Entry in Clinical Genomic Studies.

Publication Title

JAMA Oncol

Document Type

Article

Publication Date

11-4-2021

Keywords

chiles; oregon; washington; seattle; isb; genomics

Abstract

Importance: Real-world data sets that combine clinical and genomic data may be subject to left truncation (when potential study participants are not included because they have already passed the milestone of interest at the time of study recruitment). The lapse between diagnosis and molecular testing can present analytic challenges and threaten the validity and interpretation of survival analyses.

Observations: Effects of ignoring left truncation when estimating overall survival are illustrated using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative (GENIE BPC), and a straightforward risk-set adjustment approach is described. Ignoring left truncation results in overestimation of overall survival: unadjusted median survival estimates from diagnosis among patients with stage IV non-small cell lung cancer or stage IV colorectal cancer were overestimated by more than 1 year.

Conclusions and Relevance: Clinicogenomic data are a valuable resource for evaluation of real-world cancer outcomes and should be analyzed using appropriate methods to maximize their potential. Analysts must become adept at application of appropriate statistical methods to ensure valid, meaningful, and generalizable research findings.

Specialty

Earle A. Chiles Research Institute

Specialty

Institute for Systems Biology

Share

COinS