The lexicon of multirod constructs in adult spinal deformity: a concise description of when, why, and how.

Document Type


Publication Date


Publication Title

Journal of neurosurgery. Spine


washington; swedish; swedish neuro; adult spinal deformity; multirod constructs; scoliosis; spine biomechanics; spine fusion


The use of multirod constructs in the setting of adult spinal deformity (ASD) began to prevent rod fracture and pseudarthrosis near the site of pedicle subtraction osteotomies (PSOs) and 3-column osteotomies (3COs). However, there has been unclear and inconsistent nomenclature, both clinically and in the literature, for the various techniques of supplemental rod implantation. In this review the authors aim to provide the first succinct lexicon of multirod constructs available for the treatment of ASD, providing a universal nomenclature and definition for each type of supplementary rod. The primary rod of ASD constructs is the longest rod that typically spans from the bottom of the construct to the upper instrumented vertebrae. The secondary rod is shorter than the primary rod, but is connected directly to pedicle screws, albeit fewer of them, and connects to the primary rod via lateral connectors or cross-linkers. Satellite rods are a 4-rod technique in which 2 rods span only the site of a 3CO via pedicle screws at the levels above and below, and are not connected to the primary rod (hence the term "satellite"). Accessory rods are connected to the primary rods via side connectors and buttress the primary rod in areas of high rod strain, such as at a 3CO or the lumbosacral junction. Delta rods span the site of a 3CO, typically a PSO, and are not contoured to the newly restored lordosis of the spine, thus buttressing the primary rod above and below a 3CO. The kickstand rod itself functions as an additional means of restoring coronal balance and is secured to a newly placed iliac screw on the side of truncal shift and connected to the primary rod; distracting against the kickstand then helps to correct the concavity of a coronal curve. The use of multirod constructs has dramatically increased over the last several years in parallel with the increasing prevalence of ASD correction surgery. However, ambiguity persists both clinically and in the literature regarding the nomenclature of each supplemental rod. This nomenclature of supplemental rods should help unify the lexicon of multirod constructs and generalize their usage in a variety of scientific and clinical scenarios.

Clinical Institute

Neurosciences (Brain & Spine)