Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation.
Publication Title
Front Digit Health
Document Type
Article
Publication Date
1-1-2022
Keywords
washington; isb
Abstract
We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.
Clinical Institute
Cancer
Specialty
Oncology
Specialty
Institute for Systems Biology
Recommended Citation
Stahlberg, Eric A; Abdel-Rahman, Mohamed; Aguilar, Boris; Asadpoure, Alireza; Beckman, Robert A; Borkon, Lynn L; Bryan, Jeffrey N; Cebulla, Colleen M; Chang, Young Hwan; Chatterjee, Ansu; Deng, Jun; Dolatshahi, Sepideh; Gevaert, Olivier; Greenspan, Emily J; Hao, Wenrui; Hernandez-Boussard, Tina; Jackson, Pamela R; Kuijjer, Marieke; Lee, Adrian; Macklin, Paul; Madhavan, Subha; McCoy, Matthew D; Mohammad Mirzaei, Navid; Razzaghi, Talayeh; Rocha, Heber L; Shahriyari, Leili; Shmulevich, Ilya; Stover, Daniel G; Sun, Yi; Syeda-Mahmood, Tanveer; Wang, Jinhua; Wang, Qi; and Zervantonakis, Ioannis, "Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation." (2022). Articles, Abstracts, and Reports. 6670.
https://digitalcommons.providence.org/publications/6670