Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex.

Publication Title

Science

Authors

Brian R Lee
Rachel Dalley
Jeremy A Miller
Thomas Chartrand
Jennie Close
Rusty Mann
Alice Mukora
Lindsay Ng
Lauren Alfiler
Katherine Baker
Darren Bertagnolli
Krissy Brouner
Tamara Casper
Eva Csajbok
Nicholas Donadio
Stan L W Driessens
Tom Egdorf
Rachel Enstrom
Anna A Galakhova
Amanda Gary
Emily Gelfand
Jeff Goldy
Kristen Hadley
Tim S Heistek
Dijon Hill
Wen-Hsien Hou
Nelson Johansen
Nik Jorstad
Lisa Kim
Agnes Katalin Kocsis
Lauren Kruse
Michael Kunst
Gabriela León
Brian Long
Matthew Mallory
Michelle Maxwell
Medea McGraw
Delissa McMillen
Erica J Melief
Gabor Molnar
Marty T Mortrud
Dakota Newman
Julie Nyhus
Ximena Opitz-Araya
Attila Ozsvár
Trangthanh Pham
Alice Pom
Lydia Potekhina
Ram Rajanbabu
Augustin Ruiz
Susan M Sunkin
Ildikó Szöts
Naz Taskin
Bargavi Thyagarajan
Michael Tieu
Jessica Trinh
Sara Vargas
David Vumbaco
Femke Waleboer
Sarah Walling-Bell
Natalie Weed
Grace Williams
Julia Wilson
Shenqin Yao
Thomas Zhou
Pál Barzó
Trygve Bakken
Charles Cobbs
Nick Dee
Richard G Ellenbogen
Luke Esposito
Manuel Ferreira
Nathan W Gouwens
Benjamin Grannan
Ryder P Gwinn, Swedish Neuroscience InstituteFollow
Jason S Hauptman
Rebecca Hodge
Tim Jarsky
C Dirk Keene
Andrew L Ko
Anders Rosendal Korshoej
Boaz P Levi
Kaare Meier
Jeffrey G Ojemann
Anoop Patel
Jacob Ruzevick
Daniel L Silbergeld
Kimberly Smith
Jens Christian Sørensen
Jack Waters
Hongkui Zeng
Jim Berg
Marco Capogna
Natalia A Goriounova
Brian Kalmbach
Christiaan P J de Kock
Huib D Mansvelder
Staci A Sorensen
Gabor Tamas
Ed S Lein
Jonathan T Ting

Document Type

Article

Publication Date

10-13-2023

Keywords

washington; swedish; swedish neurosci; Animals; Humans; Mice; Electrophysiological Phenomena; GABAergic Neurons; gamma-Aminobutyric Acid; Interneurons; Neocortex; Patch-Clamp Techniques

Abstract

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.

Clinical Institute

Neurosciences (Brain & Spine)

Specialty

Neurosciences

Specialty

Surgery

Share

COinS