Detection of >400 Cluster of Differentiation Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic Multiplex

Publication Title

Analytical chemistry

Document Type

Article

Publication Date

10-29-2024

Keywords

washington; isb; Single-Cell Analysis; Humans; Proteomics; Biomarkers; Leukocytes, Mononuclear; T-Lymphocytes; Cell Differentiation

Abstract

The identification and characterization of immune cell subpopulations are critical to reveal cell development throughout life and immune responses to environmental factors. Next-generation sequencing technologies have dramatically advanced single-cell genomics and transcriptomics for immune cell classification. However, gene expression is often not correlated with protein expression, and immunotyping is mostly accepted in protein format. Current single-cell proteomic technologies are either limited in multiplex capacity or not sensitive enough to detect the critical functional proteins. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology to simultaneously measure >400 proteins, a scale of >10 times than similar technologies. Such an ultrahigh multiplexity is achieved by reiterative staining of the single cells coupled with a MIST array for detection. This technology has been thoroughly validated through comparison with flow cytometry and fluorescence immunostaining techniques. Both peripheral blood mononuclear cells (PBMCs) and T cells are analyzed by the CycMIST technology, and almost the entire spectrum of cluster of differentiation (CD) surface markers has been measured. The landscape of fluctuation of CD protein expression in single cells has been uncovered by our technology. Further study found T cell activation signatures and protein-protein networks. This study represents the highest multiplexity of single immune cell marker measurement targeting functional proteins. With additional information from intracellular proteins of the same single cells, our technology can potentially facilitate mechanistic studies of immune responses under various disease conditions.

Specialty/Research Institute

Institute for Systems Biology

DOI

10.1021/acs.analchem.4c04239

Share

COinS