The peridural membrane of the spine has characteristics of synovium.
Publication Title
Anat Rec (Hoboken)
Document Type
Article
Publication Date
3-1-2021
Keywords
texas; grace; lubbock; Antigens, CD; Antigens, Differentiation, Myelomonocytic; CD55 Antigens; Epidural Space; Female; Humans; Hyaluronan Receptors; Male; Middle Aged; Spine; Synovial Membrane
Abstract
The peridural membrane (PDM) is a well-defined structure between dura mater and the wall of the spinal canal. The spine may be viewed as a multi-segmented joint, with the epidural cavity and neural foramina as joint spaces and PDM as synovial lining. The objective of this investigation was to determine if PDM has histological characteristics of synovium. Samples of the PDM of the thoraco-lumbar spine were taken from 23 human cadavers and analyzed with conventional light microscopy and confocal microscopy. Results were compared to reports on similar analyses of synovium in the literature. Histological distribution of areolar, fibrous, and adipose connective tissue in PDM was similar to synovium. The PDM has an intima and sub-intima. No basement membrane was identified. CD68, a marker for macrophage-like-synoviocytes, and CD55, a marker for fibroblast-like synoviocytes, were seen in the lining and sub-lining of the PDM. Multifunctional hyaluronan receptor CD44 and hyaluronic acid synthetase 2 marker HAS2 were abundantly present throughout the membrane. Marked presence of CD44, CD55, and HAS2 in the well-developed tunica muscularis of blood vessels and in the body of the PDM suggests a role in the maintenance and lubrication of the epidural cavity and neural foramina. Presence of CD68, CD55, and CD44 suggests a scavenging function and a role in the inflammatory response to noxious stimuli. Thus, the human PDM has histological and immunohistochemical characteristics of synovium. This suggests that the PDM may be important for the homeostasis of the flexible spine and the neural structures it contains.
Area of Special Interest
Neurosciences (Brain & Spine)
Specialty/Research Institute
Neurosciences