TBX2 Drives Neuroendocrine Prostate Cancer through Exosome-Mediated Repression of miR-200c-3p.

Publication Title

Cancers (Basel)

Document Type

Article

Publication Date

10-7-2021

Keywords

oregon; portland; ppmc; chiles; N-MYC; SOX2; TBX2; exosomes; miR-200c-3p; treatment-induced neuroendocrine prostate cancer

Abstract

Deciphering the mechanisms that drive transdifferentiation to neuroendocrine prostate cancer (NEPC) is crucial to identifying novel therapeutic strategies against this lethal and aggressive subtype of advanced prostate cancer (PCa). Further, the role played by exosomal microRNAs (miRs) in mediating signaling mechanisms that propagate the NEPC phenotype remains largely elusive. The unbiased differential miR expression profiling of human PCa cells genetically modulated for TBX2 expression led to the identification of miR-200c-3p. Our findings have unraveled the TBX2/miR-200c-3p/SOX2/N-MYC signaling axis in NEPC transdifferentiation. Mechanistically, we found that: (1) TBX2 binds to the promoter and represses the expression of miR-200c-3p, a miR reported to be lost in castrate resistant prostate cancer (CRPC), and (2) the repression of miR-200c-3p results in the increased expression of its targets SOX2 and N-MYC. In addition, the rescue of mir-200c-3p in the context of TBX2 blockade revealed that miR-200c-3p is the critical intermediary effector in TBX2 regulation of SOX2 and N-MYC. Further, our studies show that in addition to the intracellular mode, TBX2/miR-200c-3p/SOX2/N-MYC signaling can promote NEPC transdifferentiation via exosome-mediated intercellular mechanism, an increasingly recognized and key mode of propagation of the NEPC phenotype.

Area of Special Interest

Cancer

Area of Special Interest

Kidney & Diabetes

Specialty/Research Institute

Earle A. Chiles Research Institute

Specialty/Research Institute

Oncology

Specialty/Research Institute

Endocrinology

Share

COinS