Non-viral precision T cell receptor replacement for personalized cell therapy.
Publication Title
Nature
Document Type
Article
Publication Date
11-10-2022
Keywords
washington; isb
Abstract
The T cell receptor (TCR) provides the fine specificity of T cells to recognize mutations in cancer cells 1-3. We developed a clinical-grade approach based on CRISPR/Cas9 non-viral precision genome editing to simultaneously knock-out the two endogenous TCR genes, TCRα (TRAC) and TCRβ (TRBC), and insert in the TRAC locus the two chains of a neoantigen-specific TCR (neoTCR), isolated from the patient's own circulating T cells using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with refractory solid cancers received up to three distinct neoTCR-transgenic cell products, each expressing a patient-specific neoTCR, in a cell dose-escalation, first-in-human phase 1 clinical trial (NCT03970382). One patient had grade 1 cytokine release syndrome, and one grade 3 encephalitis. All had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease, and the other 11 had disease progression as best response on therapy. NeoTCR-transgenic T cells were detected in tumour biopsies post-infusion at frequencies higher than the native TCRs pre-infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs recognizing mutational neoantigens, the simultaneous knock-out of the endogenous TCR and knock-in of the neoTCRs using single-step, non-viral precision genome editing, the manufacturing of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene edited neoTCR T cell products, and the ability of the transgenic T cells to traffic to the patients' tumours.
Area of Special Interest
Cancer
Specialty/Research Institute
Institute for Systems Biology
Specialty/Research Institute
Oncology
Specialty/Research Institute
Hematology