Predictors of pelvic tilt normalization: a multicenter study on the impact of regional and lower-extremity compensation on pelvic alignment after complex adult spinal deformity surgery.
Publication Title
Journal of neurosurgery. Spine
Document Type
Article
Publication Date
1-12-2024
Keywords
adult spinal deformity; complex; lower-extremity compensation; pelvic tilt; regional compensation; sagittal alignment. washington; swedish; swedish neurosci
Abstract
OBJECTIVE: The objective was to determine the degree of regional decompensation to pelvic tilt (PT) normalization after complex adult spinal deformity (ASD) surgery.
METHODS: Operative ASD patients with 1 year of PT measurements were included. Patients with normalized PT at baseline were excluded. Predicted PT was compared to actual PT, tested for change from baseline, and then compared against age-adjusted, Scoliosis Research Society-Schwab, and global alignment and proportion (GAP) scores. Lower-extremity (LE) parameters included the cranial-hip-sacrum angle, cranial-knee-sacrum angle, and cranial-ankle-sacrum angle. LE compensation was set as the 1-year upper tertile compared with intraoperative baseline. Univariate analyses were used to compare normalized and nonnormalized data against alignment outcomes. Multivariable logistic regression analyses were used to develop a model consisting of significant predictors for normalization related to regional compensation.
RESULTS: In total, 156 patients met the inclusion criteria (mean ± SD age 64.6 ± 9.1 years, BMI 27.9 ± 5.6 kg/m2, Charlson Comorbidity Index 1.9 ± 1.6). Patients with normalized PT were more likely to have overcorrected pelvic incidence minus lumbar lordosis and sagittal vertical axis at 6 weeks (p < 0.05). GAP score at 6 weeks was greater for patients with nonnormalized PT (0.6 vs 1.3, p = 0.08). At baseline, 58.5% of patients had compensation in the thoracic and cervical regions. Postoperatively, compensation was maintained by 42% with no change after matching in age-adjusted or GAP score. The patients with nonnormalized PT had increased rates of thoracic and cervical compensation (p < 0.05). Compensation in thoracic kyphosis differed between patients with normalized PT at 6 weeks and those with normalized PT at 1 year (69% vs 35%, p < 0.05). Those who compensated had increased rates of implant complications by 1 year (OR [95% CI] 2.08 [1.32-6.56], p < 0.05). Cervical compensation was maintained at 6 weeks and 1 year (56% vs 43%, p = 0.12), with no difference in implant complications (OR 1.31 [95% CI -2.34 to 1.03], p = 0.09). For the lower extremities at baseline, 61% were compensating. Matching age-adjusted alignment did not eliminate compensation at any joint (all p > 0.05). Patients with nonnormalized PT had higher rates of LE compensation across joints (all p < 0.01). Overall, patients with normalized PT at 1 year had the greatest odds of resolving LE compensation (OR 9.6, p < 0.001). Patients with normalized PT at 1 year had lower rates of implant failure (8.9% vs 19.5%, p < 0.05), rod breakage (1.3% vs 13.8%, p < 0.05), and pseudarthrosis (0% vs 4.6%, p < 0.05) compared with patients with nonnormalized PT. The complication rate was significantly lower for patients with normalized PT at 1 year (56.7% vs 66.1%, p = 0.02), despite comparable health-related quality of life scores.
CONCLUSIONS: Patients with PT normalization had greater rates of resolution in thoracic and LE compensation, leading to lower rates of complications by 1 year. Thus, consideration of both the lower extremities and thoracic regions in surgical planning is vital to preventing adverse outcomes and maintaining pelvic alignment.
Area of Special Interest
Neurosciences (Brain & Spine)
Area of Special Interest
Orthopedics & Sports Medicine
Specialty/Research Institute
Orthopedics
Specialty/Research Institute
Neurosciences
Specialty/Research Institute
Surgery
DOI
10.3171/2023.11.SPINE23766